Soil

Soil dataset or project

Dataset: 

Study number: 

308

Data set ID: 

210308005

Date range: 

2008-05-02 to 2016-08-05

Original investigator: 

Jeff Herrick

Data contact: 

Abstract: 

    Repeat digital groundbased photos are taken once to twice a year to document plant litter and
    soil deposition or removal by wind and water transport on ten microplots located on each of the
    8 plots at each of the Aeolian, Dona Ana, and Gravelly Ridges sites. Five photos are taken of

    Repeat digital groundbased photos are taken once to twice a year to document plant litter and
    soil deposition or removal by wind and water transport on ten microplots located on each of the
    8 plots at each of the Aeolian, Dona Ana, and Gravelly Ridges sites. Five photos are taken of
    each microplot: One overhead (from directly over the microplot) and 4 lateral views at ground
    level of the microplot from each cardinal direction.

   Digital filenames are fully descriptive of the site, plot, microplot, photo view, and date taken.
   Photo filename structure:
      Example: A1-1E_20101109_IMG_1006368.jpg
               12-34_55556677_88888888888.jpg
         Where 1 = site: A=Aeolian: D=Dona Ana; G=Gravelly Ridges
               2 = plot (1-8)
               3 = microplot (1-10)
               4= photo view (O=overview; E=looking east; N=looking north; S=looking south; W=looking west
               5-6-7 = year month day of photo
               8 = original image number assigned by camera

Data download: 

Description: 

Data file (CSV) for Jornada dataset: Conmod Pilot Study:  Connectivity Microplot Repeat Photos

Data file (CSV) for Jornada dataset: Conmod Pilot Study:  Connectivity Microplot Repeat Photos

Keywords: 

Dataset: 

Study number: 

308

Data set ID: 

210308004

Date range: 

2008-06-02 to 2015-05-27

Original investigator: 

Greg Okin

Data contact: 

Abstract: 

    There are 3 sites for this study:  Gravelly Ridges, Aeolian, and Dona Ana.  Within each site,
    there are 8 plots.  The plots are 8x8 meters and have an 8x8 buffer zone on both sides of the
    plot (up and down).  There are four BSNE stands for each plot, 2 in each of the 2 buffer zones

    There are 3 sites for this study:  Gravelly Ridges, Aeolian, and Dona Ana.  Within each site,
    there are 8 plots.  The plots are 8x8 meters and have an 8x8 buffer zone on both sides of the
    plot (up and down).  There are four BSNE stands for each plot, 2 in each of the 2 buffer zones
    (8 collectors per plot).  Each stand contains 2 BSNE collectors with the collection opening at
    10cm and 30cm height and an opening of 2 cm wide and 5 cm height.  These BSNE collectors are in
    a fixed position pointing into the direction of the prevailing wind, which corresponds to the
    plot alignment.  The collectors in the upwind buffer are facing away from the plot and the
    collectors in the downwind buffer are facing into the plot.  The idea is the upwind BSNEs
    measure the amount of dust entering the plot, and the downwind BSNEs measure the amount of dust
    moving off the plot.  This provides a measure of the effectiveness of the plot obstructions to
    wind blown dust.  It is important the BSNEs are fixed in an orientation that points across the
    full length of the plot.
 

Data download: 

Description: 

Data file (CSV) for Jornada dataset: Conmod Pilot Study:  BSNE Dust Collection Data

Data file (CSV) for Jornada dataset: Conmod Pilot Study:  BSNE Dust Collection Data

Dataset: 

Study number: 

13

Data set ID: 

210013003

Date range: 

1989-07-05 to 2015-12-01

Original investigator: 

Wesley Jarrell

Data contact: 

Abstract: 

    Monthly soil water content measurements are made at 10 depths (where
    possible) at each of 10 access tubes at each of the 15 LTER-II NPP
    sites using a neutron probe (CPN Model 503DR Hydroprobe).  The counts
    of thermalized neutrons are adjusted for the decay rate of Americium
    241, then converted to soil water content using individual site

    Monthly soil water content measurements are made at 10 depths (where
    possible) at each of 10 access tubes at each of the 15 LTER-II NPP
    sites using a neutron probe (CPN Model 503DR Hydroprobe).  The counts
    of thermalized neutrons are adjusted for the decay rate of Americium
    241, then converted to soil water content using individual site
    regressions.  Soil water content is a volume/volume relationship and
    represent cm3 water/cm3 soil.  Data are provided at 30cm intervals from
    30cm to a maximum of 270cm soil depth, shallower when an impenetrable
    caliche layer is reached.  Field readings may include one at 300cm;
    however, the value for the deepest depth of each access tube is removed
    from the calculated soil water content data because of the effect of
    measuring greater soil volume directly below the probe than that of the
    more shallow depths.

Data download: 

Description: 

Data file information for the following Jornada data set: Soil Volumetric Water Content at the 15 NPP Sites of the Jornada Basin LTER from 1989

Data file information for the following Jornada data set: Soil Volumetric Water Content at the 15 NPP Sites of the Jornada Basin LTER from 1989

Keywords: 

Dataset: 

Study number: 

228

Data set ID: 

210228001

Date range: 

2008-03-18 to 2015-06-11

Original investigator: 

Dale A Gillette

Data contact: 

Abstract: 

Dataset consists of horizontal dust flux at multiple heights from BSNE dust collectors located in treatment plots (different percent vegetation removed) and adjacent downwind effect plots. Year 2008 was an annual collection. Collection in subsequent years occurred before and after the wind season.
The experiment was designed to test the effects of increasing wind erosion on soil and vegetation properties at the Jornada.  In order to increase wind erosion rates, vegetation was removed to increase bare surface area and stimulate erosion (the less vegetation present the greater the wind erosion).  The basic experimental design includes three treatment blocks.  Each block has four treatment plots with different level of vegetation removed (25-100%) and a control treatment.  Treatment plots are 25x50m with 25m buffers between.  The vegetation removal includes grasses and small shrubs (like XASA and ZIGR), but not mesquite or yucca or any of the larger shrubs).  Also, adjacent downwind plots are included in the design.  These plots are strictly for monitoring of soil and vegetation properties, so no maintenance is required on these areas.

Data download: 

Description: 

Keywords: 

Project: 

Study Number: 301

Project ID: 

210301000

Original Investigator: 

Greg Okin

Abstract: 

In a large-scale grass removal experiment (NEAT), we identified several important thresholds that impact the conversion of grasslands to shrublands.

Between 75%-100% grass loss, aeolian transport increases dramatically, but carbon and nitrogen in windborne sediment display another threshold between 50%-75% grass loss (Li et al. 2007). With lower grass cover, nutrient additions to the soil are overwhelmed by aeolian emissions, resulting in a net loss of soil nutrients (Li et al. 2008). The sediment that is deposited downwind of the vegetation is both coarser (Li et al. 2009b) and lower in nitrogen (Li et al. 2009a) than the source sediment. Increased aeolian sediment flux downwind decreases grass cover and increases shrub cover (Alvarez et al. 2011). Wet years increased competition among grasses and decreased competition between grasses and shrubs (Alvarez et al. 2012). These data were used to develop and validate a model of aeolian sediment flux (Okin et al. 2006, Okin 2008).

     Hypothesis: As bare gap sizes increase, a connectivity threshold level is reached that sets the stage for nonlinear increases in the spatial extent of shrub dominance owing to negative effects on grass persistence [1(a)] and positive feedbacks to shrub establishment and growth. This hypothesis will be tested on plots established in 2004 in the NEAT where 0, 50, 75, or 100% of original herbaceous cover was removed (and maintained thereafter) from 25 x 50 m plots in each of three blocks (Li et al. 2007). These removals generated varying levels of grass fragmentation with consequent effects on shrub expansion and grass loss in contiguous downwind plots that have been qualitatively observed (Alvarez et al. 2012). We propose to quantify (a) downwind effects at different fetch lengths, (b) vegetation feedbacks on gap size and aeolian transport, and (c) effects of interactions between climate and dust flux on plant mortality through time. We will continue to monitor aeolian sediment flux, vegetation composition (line-point intercept and gap-size distribution; Herrick et al. 2005), individual plants (sensu Alvarez et al. 2011), and soil C and N (sensu Li et al. 2008) and will relate dynamics in these variables to precipitation. Results will be analyzed by ANCOVA with flux, bare gap size, or herbaceous cover as continuous variables. We will also use the wind and vegetation dynamics components of our ENSEMBLE model to identify threshold effects of grass cover on connectivity by wind for different amounts of precipitation, and to determine feedbacks to shrub establishment and growth via changes in the deposition or erosion of soil and nutrients.

Funding Source: 

NSF

Research Area: 

Data Category: 

Dataset: 

Study number: 

338

Data set ID: 

210338004

Date range: 

2010-06-06 to 2011-09-30

Original investigator: 

Ryan Templeton

Abstract: 

Description: 

Dataset: 

Study number: 

122

Data set ID: 

210122001

Date range: 

1995-01-02 to 2015-12-02

Original investigator: 

Dale A Gillette

Data contact: 

Abstract: 

Distance of crust surface to a crossbar set into the soil. Three "torvane" measurements that measure the torque needed to break the crust is also recorded. These measurements are made monthly near each of three monitoring towers (East, Middle, West) on the Scrape Site.

Distance of crust surface to a crossbar set into the soil. Three "torvane" measurements that measure the torque needed to break the crust is also recorded. These measurements are made monthly near each of three monitoring towers (East, Middle, West) on the Scrape Site.

Data download: 

Description: 

Data file (comma-separated value text) contains the data for the Jornada dataset: Abrasion of Crust at Scrape Site

Data file (comma-separated value text) contains the data for the Jornada dataset: Abrasion of Crust at Scrape Site

Dataset: 

Study number: 

27

Data set ID: 

210278001

Date range: 

2007-07-24 to 2009-08-10

Original investigator: 

Lara G Reichmann

Data contact: 

Abstract: 

Volumetric soil water is used to measure the effectiveness of the water manipulation treatments. Soil water content is monitored at 2 depths (5-10, 30-50 cm) using ECH2OTM moisture probes connected to an ECH2O check handheld.

Volumetric soil water is used to measure the effectiveness of the water manipulation treatments. Soil water content is monitored at 2 depths (5-10, 30-50 cm) using ECH2OTM moisture probes connected to an ECH2O check handheld.

Data download: 

Description: 

Data file information for the following Jornada data set: Soil water content in precipitation and nitrogren treatment plots at 2 depth profiles

Dataset: 

Study number: 

36

Data set ID: 

210365001

Date range: 

1933-01-01 to 2011-12-31

Original investigator: 

Robert S Campbell

Abstract: 

In 1933 and 1935, two transects were established in the Natural Revegetation Exclosure and Pasture 8b, respectively, to measure long-term soil movement in areas undergoing mesquite invasion.

These two transects, established in a Prosopis-Bouteloua ecotone, were to: "measure any future changes in the extent or succession of three contiguous zones of vegetation, Bouteloua eriopoda, Gutierrezia, and Prosopis glandulosa dunes. Thus, future chartings of this transect should show whether, under the range management practiced, the succession is progressing toward the black grama climax or whether it is retrogressing toward mesquite sandhills." (E.L. Little, 1935, unpublished report) Soil movement at these transects was measured by the distance between the soil surface and a notch in 50 cm t-posts located every 15.2 m (50 ft). The 1731-m Natural Revegetation Exclosure tranect runs north-south through the center of the exclosure and extends 61 m (200ft) beyond the boundary fence on either end. It is located in primarily deep, loamy sand soils. The 457-m Pasture 8b transect is oriented WSW-ENE, and is located in shallower soils. These transects were measured in 1950 (8b only), 1955 (8b only), every five years from 1980-2000, and most recently in 2011. Most steel posts were remeasured at these intervals, but some were lost due to excavation or burial. These were for the most part replaced, with a new baseline notch height initiated on the posts. Data fields correspond to each year of collection, as well as measures of soil deposition or deflation during the intervals. Spatial data include post locations and identifiers.

Description: 

Data file information for the following Jornada data set: Soil movement across black grama-mesquite ecotones beginning in 1933

Project: 

Study Number: 365

Project ID: 

210365000

Original Investigator: 

Robert Gibbens

Abstract: 

In 1933 and 1935, two transects were established in the Natural Revegetation Exclosure and Pasture 8b, respectively, to measure long-term soil movement in areas undergoing mesquite invasion.

These two transects, established in a Prosopis-Bouteloua ecotone, were to: "measure any future changes in the extent or succession of three contiguous zones of vegetation, Bouteloua eriopoda, Gutierrezia, and Prosopis glandulosa dunes. Thus, future chartings of this transect should show whether, under the range management practiced, the succession is progressing toward the black grama climax or whether it is retrogressing toward mesquite sandhills." (E.L. Little, 1935, unpublished report) Soil movement at these transects was measured by the distance between the soil surface and a notch in 50 cm t-posts located every 15.2 m (50 ft). The 1731-m Natural Revegetation Exclosure tranect runs north-south through the center of the exclosure and extends 61 m (200ft) beyond the boundary fence on either end. It is located in primarily deep, loamy sand soils. The 457-m Pasture 8b transect is oriented ESE-WNW, and is located in shallower soils. These transects were measured in 1950 (8b only), 1955 (8b only), every five years from 1980-2000, and most recently in 2011.

Funding Source: 

N/A

Research Area: 

Data Category: 

Pages

Subscribe to RSS - Soil