Soil

Soil dataset or project

Dataset: 

Data set ID: 

12345

Abstract: 

Collections of airborne sand are obtained at the 15 NPP sites and the Geomet site. The collections are taken using BSNE collectors. The collectors are turned into the wind with wind vanes. The amount of material collected corresponds to the horizontal flux at the height of the collector and the opening area of the collector and the duration of the sampling time. The five heights of the BSNE collectors above the soil surface are 5, 10, 20, 50, and 100 centimeters for every location where samples are taken. The hypothesis of the experiment is that the vertical flux of the particles smaller than 10 micrometers is a constant ratio of the horizontal sand flux. The objectives of the experiment are to find patterns of sand flux rates as affected by soil and vegetation.

Data sources: 

data_BSNE_18_sites

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

471

Data set ID: 

210472001

Abstract: 

t: The goal of this Master’s thesis project, which was carried out in July and August of 2016, was to assess the effect of inferred grazing intensity on 1) vegetation cover type and 2) soil organic carbon (SOC) at the Jornada Experimental Range in southern New Mexico. A sampling transect was established at each of 3 long term cattle water sources (85-106 years old), beginning 5m from the water source and continuing 1500m outward. Soil bulk density, soil organic carbon, soil organic nitrogen, and dominant plant cover type (shrub, grass, and bare soil) were sampled at 20 locations on each transect. Two hypotheses evaluated in this study are: 1) higher grazing pressure near the water source will lead to reduced vegetation cover and C inputs into the soil, leading to higher SOC stocks in soil with far proximity to the water source; and 2) Grazing very close to the water source will exert high disturbance and deposit SOC via defecation, leading to higher SOC stocks in soil with close proximity to the water source.

 

A figure of the data in this package:  https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/Cattle_soil_carbon_figure.jpg

Location on EDI: https://portal.edirepository.org/nis/metadataviewer?packageid=knb-lter-jrn.210472001.1

Data sources: 

cattle_soil_carbon

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

328

Data set ID: 

210328003

Abstract: 

This completed dataset contains soil moisture data from a study at the Jornada Experimental Range (JER) in southern New Mexico. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009 and has five precipitation treatments (see Methods). While the study began in 2009, contains 50 plots (10 per treatment) and is ongoing, these data were only collected from July 2011 to December 2013 in a subset of 20 plots (4 per treatment). This dataset is intended to provide information about the amount of water in the top 30 cm of soil as well as verify that experimental precipitation manipulations are effective. Figure of soil moisture by precipitation treatment: https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/soil_moisture_figure.jpg Metadata and data on EDI: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-jrn&identifier=210328003

Data sources: 

soil_moisture_precip_variability

Keywords: 

Dataset: 

Study number: 

351

Data set ID: 

210351003

Abstract: 

This completed dataset, collected in 2001, contains soil particle size analysis (PSA) and sand fractionation data from soil cores collected at 116 quadrat locations that are part of the Jornada Experimental Range's long-term Permanent Quadrats study. The goal of this effort was to help characterize plant-scale factors related to vegetation dynamics observed in the Permanent Quadrats. At each quadrat location, 4 cores were collected at 2 depths (0-5cm and 5-20cm) and assessed for percent sand, silt and clay. The sand fraction, if large enough, was then separated into 5 sand size classes (53-106 micrometers, 106-250 micrometers, 250-500 micrometers, 500-1000 micrometers, 1000-2000 micrometers) to measure the percent fraction of each.

Composition of Sand Fraction at 116 Permanent Quadrats:  https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/Quadrats_Sand_Fractionation_0.jpg

Soil Particle Size Analysis at 116 Permanent Quadrats: https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/Quadrats_PSA_0.jpg

Soil PSA

Data sources: 

Soil PSA and Fractionation data

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

308

Data set ID: 

210308005

Abstract: 

    Repeat digital groundbased photos are taken once to twice a year to document plant litter and
    soil deposition or removal by wind and water transport on ten microplots located on each of the
    8 plots at each of the Aeolian, Dona Ana, and Gravelly Ridges sites. Five photos are taken of
    each microplot: One overhead (from directly over the microplot) and 4 lateral views at ground
    level of the microplot from each cardinal direction.

   Digital filenames are fully descriptive of the site, plot, microplot, photo view, and date taken.
   Photo filename structure:
      Example: A1-1E_20101109_IMG_1006368.jpg
               12-34_55556677_88888888888.jpg
         Where 1 = site: A=Aeolian: D=Dona Ana; G=Gravelly Ridges
               2 = plot (1-8)
               3 = microplot (1-10)
               4= photo view (O=overview; E=looking east; N=looking north; S=looking south; W=looking west
               5-6-7 = year month day of photo
               8 = original image number assigned by camera

Data sources: 

photos_Jornada_308005_conmod_pilot

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

308

Data set ID: 

210308004

Abstract: 

    There are 3 sites for this study:  Gravelly Ridges, Aeolian, and Dona Ana.  Within each site,
    there are 8 plots.  The plots are 8x8 meters and have an 8x8 buffer zone on both sides of the
    plot (up and down).  There are four BSNE stands for each plot, 2 in each of the 2 buffer zones
    (8 collectors per plot).  Each stand contains 2 BSNE collectors with the collection opening at
    10cm and 30cm height and an opening of 2 cm wide and 5 cm height.  These BSNE collectors are in
    a fixed position pointing into the direction of the prevailing wind, which corresponds to the
    plot alignment.  The collectors in the upwind buffer are facing away from the plot and the
    collectors in the downwind buffer are facing into the plot.  The idea is the upwind BSNEs
    measure the amount of dust entering the plot, and the downwind BSNEs measure the amount of dust
    moving off the plot.  This provides a measure of the effectiveness of the plot obstructions to
    wind blown dust.  It is important the BSNEs are fixed in an orientation that points across the
    full length of the plot.
 

Data sources: 

data_Jornada_308004_conmod_pilot_bsne

LTER Core Area(s): 

Dataset: 

Study number: 

13

Data set ID: 

210013003

Abstract: 

    Monthly soil water content measurements are made at 10 depths (where
    possible) at each of 10 access tubes at each of the 15 LTER-II NPP
    sites using a neutron probe (CPN Model 503DR Hydroprobe).  The counts
    of thermalized neutrons are adjusted for the decay rate of Americium
    241, then converted to soil water content using individual site
    regressions.  Soil water content is a volume/volume relationship and
    represent cm3 water/cm3 soil.  Data are provided at 30cm intervals from
    30cm to a maximum of 270cm soil depth, shallower when an impenetrable
    caliche layer is reached.  Field readings may include one at 300cm;
    however, the value for the deepest depth of each access tube is removed
    from the calculated soil water content data because of the effect of
    measuring greater soil volume directly below the probe than that of the
    more shallow depths.

Data sources: 

data_Jornada_013_npp_soil_volumetric_water_content

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

228

Data set ID: 

210228001

Abstract: 

Dataset consists of horizontal dust flux at multiple heights from BSNE dust collectors located in treatment plots (different percent vegetation removed) and adjacent downwind effect plots. Year 2008 was an annual collection. Collection in subsequent years occurred before and after the wind season. The experiment was designed to test the effects of increasing wind erosion on soil and vegetation properties at the Jornada.  In order to increase wind erosion rates, vegetation was removed to increase bare surface area and stimulate erosion (the less vegetation present the greater the wind erosion).  The basic experimental design includes three treatment blocks.  Each block has four treatment plots with different level of vegetation removed (25-100%) and a control treatment.  Treatment plots are 25x50m with 25m buffers between.  The vegetation removal includes grasses and small shrubs (like XASA and ZIGR), but not mesquite or yucca or any of the larger shrubs).  Also, adjacent downwind plots are included in the design.  These plots are strictly for monitoring of soil and vegetation properties, so no maintenance is required on these areas.

Data sources: 

data_Jornada_228001_neat_bsne

LTER Core Area(s): 

Keywords: 

Project: 

Study Number: 301

Project ID: 

210301000

Original Investigator: 

Greg Okin

Funding Source: 

NSF

Research Area: 

Data Category: 

Dataset: 

Study number: 

338

Data set ID: 

210338004

Data sources: 

data_Jornada_338004_tromble_weir_soil_moisture

LTER Core Area(s): 

Pages

Subscribe to RSS - Soil