LTER VI

Dataset: 

Data set ID: 

12345

Date range: 

1998-03-14 to 2019-02-21

Original investigator: 

Dale A Gillette

Data contact: 

Abstract: 

Collections of airborne sand are obtained at the 15 NPP sites and the Geomet site. The collections are taken using BSNE collectors. The collectors are turned into the wind with wind vanes. The amount of material collected corresponds to the horizontal flux at the height of the collector and the opening area of the collector and the duration of the sampling time. The five heights of the BSNE collectors above the soil surface are 5, 10, 20, 50, and 100 centimeters for every location where samples are taken. The hypothesis of the experiment is that the vertical flux of the particles smaller than 10 micrometers is a constant ratio of the horizontal sand flux. The objectives of the experiment are to find patterns of sand flux rates as affected by soil and vegetation.

Data download: 

Description: 

Horizontal sand mass flux data Derived from 5-stage BSNE collectors at 15 NPP sites and Geomet site

Horizontal sand mass flux data Derived from 5-stage BSNE collectors at 15 NPP sites and Geomet site

LTER Core Area(s): 

Keywords: 

Dataset: 

Data set ID: 

210128002

Date range: 

1983-12-05 to 2017-12-18

Original investigator: 

William H Schlesinger

Data contact: 

Abstract: 

Atmospheric deposition as found in dryfall (dust) and wetfall precipitation has been collected and analyzed since 1983 using an Aerochem Metrics wetfall/dryfall collector located at the Jornada LTER weather station north of Las Cruces, NM, USA.

Atmospheric deposition as found in dryfall (dust) and wetfall precipitation has been collected and analyzed since 1983 using an Aerochem Metrics wetfall/dryfall collector located at the Jornada LTER weather station north of Las Cruces, NM, USA. Wetfall occurring as precipitation is collected after each event with a sample size large enough to analyze. Each sample is analyzed for Br, Ca, Cl, F, HPO4, K, Mg, Na, NH4, NO3/NO2, SO4, Total N, and Total P. Analysis of Sr and Dissolved Organic Nitrogen was discontinued in 2003. Dryfall data are available as a separate data package.  

Data download: 

Description: 

Wetfall chemistry data

Wetfall chemistry data

LTER Core Area(s): 

Keywords: 

Dataset: 

Data set ID: 

210120001

Date range: 

1986-09-24 to 2015-11-02

Original investigator: 

Walter G Whitford

Data contact: 

Abstract: 

This ongoing data set contains percent canopy cover estimates of perennial plant species from transects that cross a grazed/ungrazed boundary fenceline of a single exclosure on the New Mexico State University Chihuahuan Desert Rangeland Research Center in Dona Ana County, New Mexico, USA.

This ongoing data set contains percent canopy cover estimates of perennial plant species from transects that cross a grazed/ungrazed boundary fenceline of a single exclosure on the New Mexico State University Chihuahuan Desert Rangeland Research Center in Dona Ana County, New Mexico, USA. In the spring of 1982, as part of the establishment of the Jornada Long-Term Ecological Research site in southern New Mexico, a 135 ha portion of a 1500 ha, internally drained, watershed was exclosed from grazing by domestic livestock. Prior to exclosure the watershed, as well as the rest of the Jornada basin, had been moderately to heavily grazed for the past 100 years. Concurrent with grazing, the vegetation had undergone a dramatic change from desert grassland, with an almost continuous cover of C4 perennial grasses, to isolated patches of the original grassland in a mosaic with desert shrub dominated plant communities (Buffington and Herbel, 1965). The exclosure lies along a northeast facing piedmont slope at the base of a steep isolated mountain peak, and covers a variety of component landforms from the foot of the mountain to the basin floor. This provided the opportunity to investigate the response of vegetation with respect to landscape characteristics as well as release from grazing. This summary data set consists of percent canopy cover of all perennial plant species from the plant line intercept measurements on either side of the LTER-I exclosure East and West boundary fence. Sampling occurs approximately every five years; it was last conducted in November 2015 and will take place again in 2020.  

Boxplots at canopy cover by form: https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/Canopy_cover_boxplots_1.jpg

Location on EDI: https://portal.edirepository.org/nis/metadataviewer?packageid=knb-lter-jrn.210120001

Data download: 

Description: 

Perennial species canopy cover across grazed/ungrazed boundary fencelines

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

471

Data set ID: 

210472001

Abstract: 

t: The goal of this Master’s thesis project, which was carried out in July and August of 2016, was to assess the effect of inferred grazing intensity on 1) vegetation cover type and 2) soil organic carbon (SOC) at the Jornada Experimental Range in southern New Mexico.

A sampling transect was established at each of 3 long term cattle water sources (85-106 years old), beginning 5m from the water source and continuing 1500m outward. Soil bulk density, soil organic carbon, soil organic nitrogen, and dominant plant cover type (shrub, grass, and bare soil) were sampled at 20 locations on each transect. Two hypotheses evaluated in this study are: 1) higher grazing pressure near the water source will lead to reduced vegetation cover and C inputs into the soil, leading to higher SOC stocks in soil with far proximity to the water source; and 2) Grazing very close to the water source will exert high disturbance and deposit SOC via defecation, leading to higher SOC stocks in soil with close proximity to the water source.

 

A figure of the data in this package:  https://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/files/data/Cattle_soil_carbon_figure.jpg

Location on EDI: https://portal.edirepository.org/nis/metadataviewer?packageid=knb-lter-jrn.210472001.1

Data download: 

Description: 

Vegetation Cover and Soil Organic Carbon at 3 wells in the Jornada Basin

Vegetation Cover and Soil Organic Carbon at 3 wells in the Jornada Basin

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

262

Data set ID: 

210262005

Date range: 

2005-01-01 to 2014-12-31

Original investigator: 

Brandon Bestelmeyer

Data contact: 

Abstract: 

   Dataset consists of the annual aboveground net primary production (ANPP) across 3
   habitats grouped by plant form and total ANPP.  The habitats are grassland, mesquite
   shrubland, and the ecotone between the 2. The plant forms are winter annual forb,
   annual forb, bi-annual forb, perennial forb, annual grass, perennial grass, shrub, and
   sub-shrub.

   Dataset consists of the annual aboveground net primary production (ANPP) across 3
   habitats grouped by plant form and total ANPP.  The habitats are grassland, mesquite
   shrubland, and the ecotone between the 2. The plant forms are winter annual forb,
   annual forb, bi-annual forb, perennial forb, annual grass, perennial grass, shrub, and
   sub-shrub.

   OBJECTIVE:  The purpose of the study is to investigate how pulses of precipitation
   translate into pulses of plant aboveground net primary productivity (NPP) and how the
   small mammal community responds to such changes also in relation to shrub gradient
   across the landscape.  Particularly we are interested in how the energy flows through
   the ecosystem in response to pulses of rain, how the small mammal community partition
   resources (in terms of C3 (forbs and shrubs) and C4 (grasses) plants) and how the
   genetic structure of some species (e.g., Dipodomys spp.) is affected by their
   population dynamics.

   HYPOTHESES:

   1) Small mammal abundance should respond positively to precipitation and NPP.

   2) On a temporal scale, the small mammal energy use should show parallel fluxes along
   the shrub gradient.

   3) The small mammal community should consume C3 and C4 plants according to their
   availability (or NPP).

   4) At low population density, dispersal should be limited and the genetic variance will
   be distributed among populations rather than within (i.e., Fst will trend towards
   higher values).  After pulses of rain and NPP, population densities will be greater,
   dispersal prevalent, and the genetic variance of populations will be distributed within
   populations (i.e., Fst will approach zero) as dispersal homogenizes populations.

   Total aboveground annual net primary productivty is calculated for winter annual forb,
   annual forb, bi-annual forb, perennial forb, annual grass, perennial grass, shrub,
   sub-shrub, and the total of these.
 

Data download: 

Description: 

Data file (CSV) for the Jornada dataset: Ecotone Study: Plant Above Ground Net Primary Productivity by Site

Data file (CSV) for the Jornada dataset: Ecotone Study: Plant Above Ground Net Primary Productivity by Site

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

262

Data set ID: 

210262001

Date range: 

2008-04-21 to 2014-10-30

Original investigator: 

Brandon Bestelmeyer

Data contact: 

Abstract: 

   Dataset consists of plant measurements used to calculate the annual aboveground net 
   primary production (ANPP) across 3 habitats grouped by plant form and total ANPP.  
   The habitats are grassland, mesquite shrubland, and the ecotone between the 2. The 
   plant forms are winter annual forb, annual forb, bi-annual forb, perennial forb, 

   Dataset consists of plant measurements used to calculate the annual aboveground net 
   primary production (ANPP) across 3 habitats grouped by plant form and total ANPP.  
   The habitats are grassland, mesquite shrubland, and the ecotone between the 2. The 
   plant forms are winter annual forb, annual forb, bi-annual forb, perennial forb, 
   annual grass, perennial grass, shrub, and sub-shrub.

   OBJECTIVE:  The purpose of the study is to investigate how pulses of precipitation
   translate into pulses of plant aboveground net primary productivity (NPP) and how the
   small mammal community responds to such changes also in relation to shrub gradient
   across the landscape.  Particularly we are interested in how the energy flows through
   the ecosystem in response to pulses of rain, how the small mammal community partition
   resources (in terms of C3 (forbs and shrubs) and C4 (grasses) plants) and how the
   genetic structure of some species (e.g., Dipodomys spp.) is affected by their
   population dynamics.

   HYPOTHESES:

   1) Small mammal abundance should respond positively to precipitation and NPP.

   2) On a temporal scale, the small mammal energy use should show parallel fluxes along
   the shrub gradient.

   3) The small mammal community should consume C3 and C4 plants according to their
   availability (or NPP).

   4) At low population density, dispersal should be limited and the genetic variance will
   be distributed among populations rather than within (i.e., Fst will trend towards
   higher values).  After pulses of rain and NPP, population densities will be greater,
   dispersal prevalent, and the genetic variance of populations will be distributed within
   populations (i.e., Fst will approach zero) as dispersal homogenizes populations.

   Total aboveground annual net primary productivty is calculated for winter annual forb,
   annual forb, bi-annual forb, perennial forb, annual grass, perennial grass, shrub,
   sub-shrub, and the total of these.
 

Data download: 

Description: 

Data file (CSV) for Jornada dataset: Ecotone Study: Quadrat Plant Measurement Data

Data file (CSV) for Jornada dataset: Ecotone Study: Quadrat Plant Measurement Data

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

13

Data set ID: 

210013003

Date range: 

1989-07-05 to 2015-12-01

Original investigator: 

Wesley Jarrell

Data contact: 

Abstract: 

    Monthly soil water content measurements are made at 10 depths (where
    possible) at each of 10 access tubes at each of the 15 LTER-II NPP
    sites using a neutron probe (CPN Model 503DR Hydroprobe).  The counts
    of thermalized neutrons are adjusted for the decay rate of Americium
    241, then converted to soil water content using individual site

    Monthly soil water content measurements are made at 10 depths (where
    possible) at each of 10 access tubes at each of the 15 LTER-II NPP
    sites using a neutron probe (CPN Model 503DR Hydroprobe).  The counts
    of thermalized neutrons are adjusted for the decay rate of Americium
    241, then converted to soil water content using individual site
    regressions.  Soil water content is a volume/volume relationship and
    represent cm3 water/cm3 soil.  Data are provided at 30cm intervals from
    30cm to a maximum of 270cm soil depth, shallower when an impenetrable
    caliche layer is reached.  Field readings may include one at 300cm;
    however, the value for the deepest depth of each access tube is removed
    from the calculated soil water content data because of the effect of
    measuring greater soil volume directly below the probe than that of the
    more shallow depths.

Data download: 

Description: 

Data file information for the following Jornada data set: Soil Volumetric Water Content at the 15 NPP Sites of the Jornada Basin LTER from 1989

Data file information for the following Jornada data set: Soil Volumetric Water Content at the 15 NPP Sites of the Jornada Basin LTER from 1989

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

228

Data set ID: 

210228001

Date range: 

2008-03-18 to 2015-06-11

Original investigator: 

Dale A Gillette

Data contact: 

Abstract: 

Dataset consists of horizontal dust flux at multiple heights from BSNE dust collectors located in treatment plots (different percent vegetation removed) and adjacent downwind effect plots. Year 2008 was an annual collection. Collection in subsequent years occurred before and after the wind season.
The experiment was designed to test the effects of increasing wind erosion on soil and vegetation properties at the Jornada.  In order to increase wind erosion rates, vegetation was removed to increase bare surface area and stimulate erosion (the less vegetation present the greater the wind erosion).  The basic experimental design includes three treatment blocks.  Each block has four treatment plots with different level of vegetation removed (25-100%) and a control treatment.  Treatment plots are 25x50m with 25m buffers between.  The vegetation removal includes grasses and small shrubs (like XASA and ZIGR), but not mesquite or yucca or any of the larger shrubs).  Also, adjacent downwind plots are included in the design.  These plots are strictly for monitoring of soil and vegetation properties, so no maintenance is required on these areas.

Data download: 

Description: 

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

119

Data set ID: 

210119001

Date range: 

1982-03-12 to 2014-09-10

Original investigator: 

Gary Cunningham

Data contact: 

Abstract: 

Average percent coverage of each plant species per 5-meter segment along a 30-meter line intercept perpendicular to each of 91 stations on each of the three LTER-I permanent transects. Data consists of week number, transect, station number, species, carbon reduction pathway, habit, form, and average percent cover. It is sorted by transect, station number, then plant species.

Measurements are made on 30-meter line intercept transects located perpendicular to each of 91 stations on each of the 2.7 km long Control, Treatment, and Alternate Control Transects established at the beginning of LTER-I. Following January 1, 1987, spring line- intercepts will only record cover of annual species. All perennial cover data will be limited to fall samples. Both annuals and perennials are measured during the fall. Measurements were made biannually from 1982 - 1988. After this they are measured every 5 years. Annuals are measured through 1998; however, after this only perennials are measured and only in the fall. Each plant line transect is divided into 6 5-meter segments. Annuals are measured only in the first meter of segments 1, 2, and 3 and in the last meter of segments 4, 5, and 6. Perennials are measured for the full length of all segments. BACKGROUND. In the spring of 1982, as part of the establishment of the Jornada Long-Term Ecological Research site in southern New Mexico, a 135 ha portion of a 1500 ha, internally drained, watershed was exclosed from grazing by domestic livestock. Prior to exclosure the watershed, as well as the rest of the Jornada basin, had been moderately to heavily grazed for the past 100 years. Concurrent with grazing, the vegetation had undergone a dramatic change from desert grassland, with an almost continuous cover of C4 perennial grasses, to isolated patches of the original grassland in a mosaic with desert shrub dominated plant communities (Buffington and Herbel, 1965). The exclosure lies along a northeast facing piedmont slope at the base of a steep isolated mountain peak, and covers a variety of component landforms from the foot of the mountain to the basin floor. This provided the opportunity to investigate the response of vegetation with respect to landscape characteristics as well as release from grazing.

Data download: 

Description: 

Data file information for the following Jornada data set: Transect plant line intercepts - percent cover by species

LTER Core Area(s): 

Keywords: 

Dataset: 

Study number: 

11

Data set ID: 

210011004

Date range: 

1989-04-25 to 2017-09-21

Original investigator: 

Laura Huenneke

Data contact: 

Abstract: 

This is the reference harvest biomass data of plants near, but outside the grid of permanent NPP quadrats that was harvested for each of 15 sites. Height and cover are recorded in the field. Live biomass is weighed in the lab and all measurements are recorded as reference harvest data.

The NPP sites are grids of permanent 1 square meter quadrats established in 15 sites: three sites in each of 5 community zones (grama grassland, creosotebush scrub, tarbush flats, mesquite dunes and playa). Grids consist of 49 quadrats arranged in a square 7 x 7 pattern, with quadrats 10 m apart (P-COLL has 48 quadrats in a 3 x 16 pattern).

Data download: 

Description: 

Data file information for Jornada data set: NPP Study: Reference harvest data file

LTER Core Area(s): 

Keywords: 

Pages

Subscribe to RSS - LTER VI