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A B S T R A C T   

A key challenge of precision grazing systems is identifying behavior anomalies associated with situations of 
reduced animal production and wellbeing. We determined typical ranges of diel variation of movement and 
activity patterns of steers on rangeland to identify metrics that could serve as sensitive indicators of behavior 
anomalies. Seventeen Raramuri Criollo or Criollo crossbred yearling steers weighing 318 ± 9.3 kg (winter; W) or 
358 ± 8.4 kg (late summer; LS) were fitted with GPS collars that recorded animal location at 5-min intervals. 
Steers grazed a 3,215-ha rangeland pasture for approximately 67 d in W or LS of 2016 and 2017. GPS data were 
used to derive 22 commonly monitored behavior variables. Means and day-to-day variation (CV%) of all 
behavior metrics were calculated for each animal as well as linear correlations between the CV of each behavior 
and ADG. Daily time spent resting or grazing exhibited the least day-to-day variation in both W and LS (CV 
resting =10.8 and 9.9%, respectively; CV grazing =13.8 and 14.8%, respectively); predawn area explored (CV 
=240.8%) and time spent at drinkers (CV =336.6%) exhibited the most daily variation in W and LS, respectively. 
During W, increasing day-to-day variation in daytime distance traveled and area explored, as well as daily time 
spent traveling were associated with increasing ADG (r = 0.56 to 0.58; P < 0.05). In LS, steers with greater CV for 
24-h area explored, time spent traveling, or daytime distance traveled tended to gain less weight (r =-0.77 to 
-0.84; P < 0.01), while steers with more flexible 24 hour path sinuosity tended to gain more weight (r = 0.93; P <
0.01). Behavior metrics more closely associated with forage intake processes, such as daily time spent grazing or 
resting, exhibited lowest diel variation levels and could be used to diagnose non-normal behavior of cattle on 
rangeland.   

1. Introduction 

Worldwide, ranchers and herders are challenged by the need to 
travel daily through rugged and hard-to-access rangelands to monitor 
the health and wellbeing of their livestock and must do so in the face of a 
rapidly dwindling rural workforce. The ubiquity of modern communi
cation tools, however, offers new opportunities to use digital technolo
gies as a means of addressing this challenge. Increasingly sophisticated 
animal wearable sensors and data mining algorithms are being used to 
develop precision grazing tools that monitor livestock behavior in real 
time (Halachmi et al., 2019; Neethirajan, 2017). These technologies are 

key to precision livestock farming systems that seek to enable livestock 
producers to adjust management proactively and enhance animal 
wellbeing and production (Berckmans 2017). A basic challenge of pre
cision animal agriculture, however, is identifying behavior pattern 
anomalies associated with situations of reduced animal wellbeing 
(Berckmans, 2017; Wathes et al., 2008). In heterogeneous grazing en
vironments such as rangelands, plasticity of behavior (an animal’s 
ability to change its behavior in response to the environment, Wong and 
Candolin 2014) is essential to adapt to the ever-changing forage supply 
(Launchbaugh and Howery, 2005; Provenza et al., 1998) which further 
complicates detection of atypical livestock behavior. 
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Animal wellbeing is defined as the ‘freedom to express normal 
behavior’ Kilgour (2012 p.2), but determining what constitutes ‘normal 
behavior’ in grazing cattle is challenging because diel activity patterns 
vary considerably from herd to herd (Kilgour 2012) and individual to 
individual (Black Rubio et al., 2008; Nyamuryekung’e et al., 2020; 
Wesley et al., 2012). The use of animal wearable sensors (Neethirajan, 
2017), now commonplace in livestock behavior research (Anderson 
et al., 2013; Knight et al., 2018; Guo et al., 2018; Vanrell et al., 2018), 
provides opportunities to characterize variation in diel cycles of move
ment and activity of grazing animals (Sarout et al., 2018) to determine 
what constitutes a deviation from ‘normal behavior’. This definition is 
urgently needed if increasingly available real-time cattle movement 
monitoring data (Bailey et al., 2018; McIntosh et al., 2020) are to be 
used to develop precision grazing systems (Laca 2009) for cattle ranches 
in western North America. 

Although ADG is insensitive to short term (transient) changes in 
animal wellbeing, we reasoned that it was a logical proxy for medium- 
term animal welfare condition since it integrates the effects of nutri
tional, thermal, or other environmental stressors on grazing animals 
(Grandin, 2016). Our objective was to characterize diel variation of 
movement, activity, and spatial distribution metrics derived from 
frequent interval geolocation readings of rangeland beef steers fitted 
with GPS collars during summer and winter. We also measured steer 
average daily gain (ADG) to determine its correlation with daily 
behavior variations. We hypothesized that behaviors associated with 
forage intake would exhibit the lowest levels of diel variation because 

steers would prioritize meeting daily dry matter intake requirements. 
We also hypothesized that metrics associated with non-forage factors 
(especially weather) and/or with forage search patterns would exhibit 
highest levels of diel and seasonal variation because ability to adapt to 
diel variation in weather and/or plasticity of forage search patterns are 
critical to thermoregulation and to composing diets that meet a steer’s 
short term nutrient requirements. Finally, we hypothesized ADG (our 
proxy for animal wellbeing) would be negatively correlated with diel 
variation in forage intake metrics and positively correlated with diel 
variation in behavior metrics associated with non-forage factors and 
forage search patterns. 

2. Materials and methods 

2.1. Study area description 

Our study was conducted at the Jornada Experimental Range (JER; 
32◦37′ N; 106◦ 40′ W) approximately 40 km north of Las Cruces, New 
Mexico, USA. The JER is approximately 78,104 ha and our experimental 
pasture was approximately 3,215 ha in size, with an average elevation of 
1200 m. The JER is situated in the northern portion of the Chihuahuan 
Desert, where the climate is semiarid with warm summers, mild winters, 
and an average of 230 frost-free days. Mean annual temperature and 
precipitation are 16.9 ◦C and 248 mm, respectively. Rainfall primarily 
occurs during the monsoon season (July through September). Detailed 
weather variables for the period of this study are provided in Table 1. 

Table 1 
Mean, maximum, minimum, range, standard error, and coefficient of variation of four diel weather variables, daylight hours, and Normalized Difference Vegetation 
Indices, during two seasons in two consecutive years (n = 25 – 35 d).  

Period Dates N Variable Mean Maximum Minimum Range Standard 
Error 

Coefficient of Variation 
(%) 

Late Summer 
1 

Oct 4, 2016 – Oct 28, 
2016 

25 Daily temperature ( ◦C) 19.94 21.89 16.33 5.56 0.28 7.00    

Maximum daily temperature ( 
◦C) 

29.03 32.22 23.89 8.33 0.48 8.32    

Minimum daily temperature ( 
◦C) 

10.84 15.00 8.28 6.72 0.40 18.58    

Daily precipitation (mm) 0.00 0.00 0.00 0.00 0.00 .    
Daylight hours 11:21:14 11:45:36 11:02:24 0:43:12 0:02:58 .    
Nighttime hours 12:38:46 12:57:36 12:14:24 0:43:12 0:02:58 .    
16-d NDVI index 0.18 0.27 − 0.01 0.32 0.00 . 

Late Summer 
2 

Sep 13, 2017 – Oct 17, 
2017 

35 Daily temperature ( ◦C) 22.35 26.42 15.25 11.17 0.52 13.64    

Maximum daily temperature ( 
◦C) 

30.61 36.72 22.22 14.50 0.56 10.91    

Minimum daily temperature ( 
◦C) 

14.08 21.11 7.78 13.33 0.59 24.69    

Daily precipitation (mm) 0.93 21.34 0.00 21.34 0.64 407.84    
Daylight hours 11:52:48 12:28:48 11:16:48 1:12:00 0:03:34 .    
Nighttime hours 12:07:12 12:43:12 11:31:12 1:12:00 0:03:34 .    
16-d NDVI index 0.19 0.27 0.08 0.31 0.00 . 

Winter 1 Dec 16, 2015 – Jan 11, 
2016 

27 Daily temperature ( ◦C) 4.17 9.75 − 1.97 11.72 0.61 76.21    

Maximum daily temperature ( 
◦C) 

10.72 20.00 3.28 16.72 0.91 44.03    

Minimum daily temperature ( 
◦C) 

− 2.39 2.78 − 7.22 10.00 0.49 − 105.52    

Daily precipitation (mm) 1.15 23.11 0.00 23.11 0.90 395.98    
Daylight hours 10:05:06 10:14:00 10:01:00 0:13:00 0:00:30 .    
Nighttime hours 13:54:54 13:59:00 13:46:00 0:13:00 0:00:30 .    
16-d NDVI index 0.09 0.21 − 0.11 0.37 0.00 . 

Winter 2 Dec 3, 2016 – Jan 6, 
2017 

35 Daily temperature ( ◦C) 8.36 13.83 3.06 10.78 0.52 36.29    

Maximum daily temperature ( 
◦C) 

15.54 24.39 8.89 15.50 0.71 26.73    

Minimum daily temperature ( 
◦C) 

1.19 7.22 − 3.89 11.11 0.51 250.47    

Daily precipitation (mm) 0.66 12.45 0.00 12.45 0.40 354.77    
Daylight hours 10:04:28 10:09:00 10:02:00 0:07:00 0:00:23 .    
Nighttime hours 13:55:32 13:58:00 13:51:00 0:07:00 0:00:23 .    
16-d NDVI index 0.11 0.21 − 0.14 0.54 0.00 .  
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Pasture 1 was well watered with four permanent drinker troughs evenly 
spaced throughout and had six small grazing exclosures and was inter
sected by a series of dirt roads (Spiegal et al., 2019; McIntosh et al., 
2021; Fig. 1). 

Soils of the northwestern JER are predominantly sandy and vegeta
tion of the study area is dominated by honey mesquite (Prosopis glan
dulosa Torr.) and perennial grasses such as black grama (Bouteloua 
eriopoda Torr.), dropseeds (Sporobolus sp.), threeawns (Aristida sp.), 
tobosa (Pleuraphis mutica Buckley), and burrograss (Schleropogon brevi
folius Phil.). Soap-tree yucca (Yucca elata av.), broom snakeweed 
(Gutierrezia sarothrae [Pursh] Britt. & Rusby), creosote bush (Larrea 
tridentate [Pursh] Nutt.), and fourwing saltbush (Atriplex canescens 
[Pursh] Nutt.) are also common in the area. Although we did not 

measure forage quality, black grama (most dominant forage species) 
averages between 5% digestible protein for cattle when plants are 
immature or in early bloom (as is presumed for the late summer period 
of our study) and 3% digestible protein during maturity (as is presumed 
for the winter periods of our study; Rodgers and Box, 1967). Sixteen-day 
composite 250 m MODIS Normalized Difference Vegetation Index im
ages were downloaded and projected using ArcGIS 10 (ESRI, Redlands, 
CA) into WGS 1984 UTM zone 13 N, and were used to compute the 
average pasture greenness for each study period (Table 1). Pasture 
greenness was used to infer relative levels of green forage available to 
steers during this study. 

Fig. 1. Map of a) ecological states and pasture infrastructure. Maps of winter (b = cohort1; c = cohort 2) and late summer (d= cohort 1; e = cohort 2) steer GPS fix 
locations for all steers during study trials. Cohort 1 winter 1 n = 10; Cohort 2 winter 2 n = 8; Cohort 1 late summer 1 n = 7; Cohort 2 late summer 2 n = 9. 
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2.2. Animals and stocking rates 

Animal handling protocols were approved by the New Mexico State 
University Institutional Animal Care and Use Committee (Protocol 
2016–019). Two cohorts of yearling steers totaling 38 Raramuri Criollo 
(RC) and Criollo × beef breed crossbred (XC) animals were monitored 
intermittently for 25, 35, 27, and 35 days over a two year period 
(December 2015 – January 2017) for weight gains and grazing behavior 
(Table 2). Steers weighed 318 ± 9.3 kg (winter; W) or 358 ± 8.4 kg (late 
summer; LS) and varied in age depending on cohort and season (min age 
= 8 mo.; max age = 28 mo.). Crossbreds available to conduct our study 
were Criollo × Waguli (Cohort 1, C1) and Criollo × Brangus (Cohort 2, 
C2), belonging to two cooperating ranches: 47 Ranch, Bisbee, Arizona; 
and Evergreen Ranching, Black Hills, South Dakota. 

Steers were kept on rangeland until 30 months of age. Recommended 
stocking rate for our study area was approximately 5.14 ha • animal unit 
month (AUM)− 1 (USDA-NRCS 2017). Our experimental pasture (3215 
ha) stocking rate was 8.93 ha • AUM− 1(equivalent to a light stocking 
rate) and was only grazed during the periods of this study. 

A subset of randomly selected steers within each biotype and cohort 
were fitted with GPS collars (Lotek 3300, Lotek Wireless New Market 
Ontario, Canada) and monitored during winter (W; dormant vegetation) 
and late summer (LS; end of growing season). GPS collars were config
ured to collect data at 5-min intervals. Ten Cohort 1 (C1) steers (five RC 
and five XC) were tracked for 25 days in December 2015 (W). Eight C1 
steers (three RC and five XC) were tracked for 27 days in October - 
November 2016 (LS). Seven cohort 2 (C2) steers (three RC and four XC) 
were tracked for 35 days in December 2016 - January 2017 (W); and 
nine C2 steers (six RC and three XC) were tracked for 35 days in 
September - October 2017 (LS). Two steers, one RC and one XC from C2 
could not be retrieved upon the end of their LS trial until a later date, 
therefore their weight data were not incorporated into our ADG 
analyses. 

2.3. Data processing 

Steer weights were recorded to the closest half kilogram and were 
determined by running animals through the scale twice on each 
weighing day. Weights were recorded for C1 on Dec. 4, 2015, Feb. 23, 
2016, Oct. 3, 2016, and Nov. 30, 2016 and for C2 on Dec. 2, 2016, Jan. 7, 
2017, Aug. 31, 2017, and Nov. 8, 2017. Steers were fasted overnight and 
weighed on the following day. Average daily gain (ADG) was calculated 
for each steer by subtracting the final weight after each GPS tracking 
period from the weight recorded at the beginning of the GPS tracking 
period and dividing the difference by the total number of days in the 
tracking period. 

GPS data collected during four periods throughout the study were 
used to calculate 22 behavior metrics classified into movement (n = 9), 
activity (n = 9) and spatial distribution (n = 4) variables (Table 3). 
Movement metrics included distance traveled (km) and path sinuosity 
(SI) during four daily time periods: pre-dawn hours (from midnight until 

sunrise); daytime hours (between sunrise and sunset); post-sunset hours 
(between sunset and midnight); and 24 h which were calculated using a 
Java program (GRAZEACT) tested by Sawalhah et al. (2016) and 
described by Gong et al. (2020). The ratio of day-to-nighttime distance 
traveled was also included in this category. Activity variables included 
daily (24 h) time spent traveling, grazing, or resting (h * day− 1) and the 
ratio of traveling-to-grazing time. Daily time spent at the drinker (within 
15 m), close to the drinker (within 200 m) or within 1 or 2 miles from the 
drinker (h* day− 1) as well as daily number of visits to the drinker were 
also included in this category. Spatial distribution metrics included area 
of the pasture explored (ha) in each of the four daily time segments 
described above. 

GRAZEACT uses the Pythagorean Theorem to calculate distance 
traveled between two consecutive GPS points. Path sinuosity was 
calculated using the straightness index (SI) outlined by Batschelet 
(1981). This index is calculated as: SI = dE

L , where dE is the Euclidean 
distance between the beginning and end of a path and L is the total 
length of the path. Minimum convex polygon (MCP) was calculated 
using a convex hull algorithm, which bounded the smallest possible 
polygon with internal angles ≤ 180◦ for the same four daily time pe
riods, as listed above (Andrew, 1979). Activities including resting (ve
locity less than 2.34 m •min− 1), traveling (velocities greater than 25 m •
min− 1), and grazing (velocities between 2.34 m • min− 1 and 25 m •
min− 1) were classified following Nyamureyekung’e et al. (2020) who 
adapted algorithms validated by Augustine and Derner (2013). Augus
tine and Derner (2013) identified a ~90% accurate classification rate of 
grazing and non-grazing locations using 5-min GPS intervals as in our 
study; GPS data in their study was synchronously collected with direct 
observations over a 4-y period. 

Drinking behavior variables were calculated in ArcGIS 10 (ESRI, 
Redlands, CA). Cattle geolocations were tallied within defined buffered 
zones around water following Valentine (1947). Tallied fix locations 
were multiplied by 5-min to determine time spent within each area. 
These pasture use patterns included time spent near a drinker (within 
200-m of water; h*day− 1), within 1.6 km of water (h*day− 1), and be
tween 1.6 and 3.2 km of water (h*day− 1), Drinker visitation rates were 
calculated using another Java program (GRAZEPIX), which tallied the 
number of times per day an animal revisited a 30 × 30 m ‘pixel’-area 
around each drinker water source. 

2.4. Statistical analyses 

We computed means daily for each of the 22 variables and each 
collared steer in either winter or late summer of both years and then 
calculated day-to-day CV of the mean for each collared animal using 
PROC MEANS and the CV Function in SAS 9.4 (SAS Institute, Cary, NC, 
USA). Winter and late summer diel means and CV of each collared steer 
were then averaged for the entire group of collared animals. Range of 
diel CV (i.e. animal-to animal variation) was also computed. To analyze 
the relationship between ADG and CV of all 22 variables during W and 
LS, we used PROC CORR in SAS 9.4 (SAS Institute, Cary, NC, USA). 

Table 2 
Mean and standard error weights and average daily gains and number of GPS-collared steers per biotype, cohort, season, and year of our study.     

Winter Late Summer 

Year Cohort Biotype GPS Date Weight ADG GPS Date Weight ADG 

2015/16 1 RC1 5 12/4/15 285.9 ± 12.3 − 0.01± 0.23 3 10/2/2016 341.0 ± 14.4 0.33 ± 0.20     
2/23/16 285.4 ± 11.0   11/30/2016 360.3 ± 22.3    

XC2 5 12/4/15 309.0 ± 9.7 − 0.06 ± 0.58 5 10/2/2016 391.8 ± 10.9 0.43 ± 0.07     
2/23/16 304.4 ± 8.9   11/30/2016 417.3 ± 15.6  

2016/17 2 RC 3 12/2/16 323.2 ± 9.2 − 0.27 ± 0.04 6 8/31/2017 332.3 ± 4.6 0.88 ± 0.06     
1/7/17 313.4 ± 3.7   11/30/2017 412.8 ± 11.8    

XC 4 12/2/16 364.3 ± 17.5 − 0.45 ± 0.49 3 8/31/2017 388.6 ± 19.7 1.04 ± 0.06     
1/7/17 348.1 ± 14.1   11/30/2017 483.6 ± 4.0   

1 RC: Raramuri Criollo (n = 18). 
2 XC: Criollo crossbred. Waguli × Criollo (n = 9) and Brangus × Criollo (n = 8) were used for cohorts # 1 and # 2, respectively. 
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Table 3 
Equations used to calculate 22 GPS-derived behavior metrics.  

# Movement Equation 
1 24-hour dist. traveled 

(km) 
The Pythagorean Theorem, c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
,was used to calculate distance (c) between consecutive GPS locations (a: northing and b: 

easting: at 5-min intervals) which were summed for the 24-h period (between 12:00 am and 11:59 pm)  
2 Daytime dist. traveled 

(km) 
The Pythagorean Theorem, c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
,was used to calculate distance (c) between consecutive GPS locations (a: northing and b: 

easting: at 5-min intervals) which were summed for the daytime period (between sunrise and sunset)  
3 Pre-dawn dist. traveled 

(km) 
The Pythagorean Theorem, c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
,was used to calculate distance (c) between consecutive GPS locations (a: northing and b: 

easting: at 5-min intervals) which were summed for the pre-dawn period (between midnight and sunrise)  
4 Post-sunset dis. traveled 

(km) 
The Pythagorean Theorem, c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
,was used to calculate distance (c) between consecutive GPS locations (a: northing and b: 

easting: at 5-min intervals) which were summed for the post-sunset period (between sunset and midnight)  
5 Night: Day dist. traveled 

ratio 
Total night distance walked/total day distance walked 

6 24-h path sinuosity (SI) The straightness index: ST =
dE
L

, where dE is the Euclidean distance between the beginning and end of a path and L is the total length 

of the path for the 24-h time period.  
7 Daytime path sinuosity 

(SI) 
The straightness index: ST =

dE
L

, where dE is the Euclidean distance between the beginning and end of a path and L is the total length 

of the path for the hours between sunrise and sunset.  
8 Pre-dawn path sinuosity 

(SI) 
The straightness index: ST =

dE
L

, where dE is the Euclidean distance between the beginning and end of a path and L is the total length 

of the path for the hours between midnight and sunrise.  
9 Post-sunset path 

sinuosity (SI) 
The straightness index: ST =

dE
L

, where dE is the Euclidean distance between the beginning and end of a path and L is the total length 

of the path for the hours between sunset and midnight.  
Activity   
10 Time spent traveling (h) Total time when animal velocity was > 25 m*min. Velocity was calculated as: v =

Δs
Δt

, where Δs is the change in speed and Δt is the 

change in time. Change in speed was calculated as Δs =
d

Δt
, where d is distance and Δt is the change in time. Distance was calculated 

using the Pythagorean Theorem, c =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
, where a and b represent northing and easting positions, respectively. Change in time 

was calculated as Δt = t2 – t1, where t2 was the second time and t1, the first in chronological order of recording.  
11 Time spent grazing (h) Total time when animal velocity was between 2.34 and 25 m*min. Velocity was calculated as: v =

Δs
Δt

, where Δs is the change in speed 

and Δt is the change in time. Change in speed was calculated as Δs =
d

Δt
, where d is distance and Δt is the change in time. Distance was 

calculated using the Pythagorean Theorem, c =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
, where a and b represent northing and easting positions, respectively. 

Change in time was calculated as Δt = t2 – t1, where t2 was the second time and t1, the first in chronological order of recording.  
12 Time spent resting (h) Total time when animal velocity was < 2.34 m*min. Velocity was calculated as: v =

Δs
Δt

, where Δs is the change in speed and Δt is the 

change in time. Change in speed was calculated as Δs =
d

Δt
, where d is distance and Δt is the change in time. Distance was calculated 

using the Pythagorean Theorem, c =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
, where a and b represent northing and easting positions, respectively. Change in time 

was calculated as Δt = t2 – t1, where t2 was the second time and t1, the first in chronological order of recording.  
13 Traveling: grazing ratio Time spent traveling/ time spent grazing 
14 Time at drinker (h) Tallied GPS fixes * 5-min within 15 m buffer around drinker troughs. 
15 Time w/in 200 m of a 

drinker (h) 
Tallied GPS fixes * 5-min within 200 m buffer around drinker troughs. 

16 Time w/in 1 mile of 
drinker (h) 

Tallied GPS fixes * 5-min within 1.61 km (1 mi) buffer around drinker troughs. 

17 Time w/in 2 miles of 
drinker (h) 

Tallied GPS fixes * 5-min within 3.21 km (2 mi) buffer around drinker troughs. 

18 Visits to drinkers (#) The pasture was gridded into 30 × 30 m cells using the Fishnet tool in ArcGIS 10. The Java script for GRAZEPIX tallied the number of 
times each steer entered each pixel associated with a drinker on a daily basis. 

Spatial 
distribution   

19 24-h area explored (ha) Andrew’s Monotone Chain Convex Hull algorithm was used to determine area explored for the full 24-h between 12:00 and 23:59. 
The algorithm sorts coordinates in lexicographic order and determines the hull by encompassing any coordinate set that would 
produce a hull-angle <180 ◦ So for a polygon (v0, v1, …, vn-1), where xy-coordinates of a vertex are deemed vi, it is assumed that vn ––– 

v0 and that v-1 ––– vn-1, and the area of the simple polygon (convex hull) is: 
1
2
|
∑n− 1

i=0
δ(o, vi, vi+1)| =

1
2

⃒
⃒
⃒
⃒
⃒

∑n− 1
i=0

xi(yi+1 − yi+1)

⃒
⃒
⃒
⃒, where o 

= (0,0; the origin).  
20 Daytime area explored 

(ha) 
Andrew’s Monotone Chain Convex Hull algorithm was used to determine area explored for the hours between sunrise and sunset. The 
algorithm sorts coordinates in lexicographic order and determines the hull by encompassing any coordinate set that would produce a 
hull-angle <180 ◦ So for a polygon (v0, v1, …, vn-1), where xy-coordinates of a vertex are deemed vi, it is assumed that vn ––– v0 and that 

v-1 ––– vn-1, and the area of the simple polygon (convex hull) is: 
1
2
|
∑n− 1

i=0
δ(o, vi, vi+1)| =

1
2

⃒
⃒
⃒
⃒
⃒

∑n− 1
i=0

xi(yi+1 − yi+1)

⃒
⃒
⃒
⃒, where o = (0,0; the 

origin).  
21 Pre-dawn area explored 

(ha) 
Andrew’s Monotone Chain Convex Hull algorithm was used to determine area explored for the hours between midnight and sunrise. 
The algorithm sorts coordinates in lexicographic order and determines the hull by encompassing any coordinate set that would 
produce a hull-angle <180 ◦ So for a polygon (v0, v1, …, vn-1), where xy-coordinates of a vertex are deemed vi, it is assumed that vn ––– 

v0 and that v-1 ––– vn-1, and the area of the simple polygon (convex hull) is: 
1
2
|
∑n− 1

i=0
δ(o, vi, vi+1)| =

1
2

⃒
⃒
⃒
⃒
⃒

∑n− 1
i=0

xi(yi+1 − yi+1)

⃒
⃒
⃒
⃒, where o 

= (0,0; the origin).  

(continued on next page) 
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Because coefficients of variation can be affected by the values of the 
mean, we also used PROC CORR in SAS 9.4 (SAS Institute, Cary, NC, 
USA) to determine whether CV values and means of the variables we 
analyzed were related. 

3. Results and discussion 

Analysis to test for association between CV and means of each 
behavior metric showed no significant correlation in either winter or 
late summer. Weather variables for the study periods were within ex
pected ranges for the Chihuahuan Desert (Table 1). Daylight hours were 
similar between seasons and we recorded no instances of extreme 
weather that could have biased our characterization of diel variation in 
foraging behavior. We also found no breed differences in behavior 
(McIntosh et al., 2021). Daily time spent resting or grazing were the 
behavior metrics with lowest diel variation in both summer and winter 
(~ 10% and 14% CV, respectively; Table 4) supporting our first hy
pothesis. For steers at our research site, a departure from average daily 
time spent resting (~ 14 h*d − 1) greater than 10% or a departure from 
average daily time spent grazing (~ 8.2 h*d − 1) greater than 14% in 
either summer or winter could signal an anomaly in foraging behavior 
but a controlled experiment would be needed to corroborate these 
thresholds. Because these metrics are closely linked to forage intake 
(time spent grazing) and rumination (time spent resting) we suspect 
that, in relative terms (i.e. similar CV values), these findings might apply 
more broadly to the cow herd though further corroboration is needed. 
Although feeding behavior in cattle is thought to be “one of the best 
indicators of health and welfare” (Werner et al., 2018, p. 139), contrary 

to what we had hypothesized, diel variation in neither time spent 
grazing nor resting were correlated with ADG, our proxy for steer 
wellbeing. The relatively small day-to-day fluctuations in time allocated 
to graze or rest were possibly insufficient to affect body weight dy
namics. Given the low stocking rate in our study pasture, ADG was likely 
limited by forage quality (see below) rather than forage intake. 

Two activity metrics associated with drinking behavior and three 
measures of area of the pasture explored by steers were the variables 
with highest diel CV in both summer and winter (Table 4), partially 
confirming our second hypothesis. Time spent at the drinker in late 
summer (CV = 336.6%) and area explored during pre-dawn hours in 
winter (CV = 240.7%) exhibited the greatest day-to-day variation 
(Table 4). Movement variables and foraging-related activities (time 
spent traveling, grazing, or resting) tended to exhibit comparable diel 
CV in summer and winter (Table 4). Conversely, largest seasonal dif
ferences in diel CV were observed for activities associated with drinking 
behaviors and area of the pasture explored (LS<W). Interestingly, 
behavior metrics with highest levels of diel or seasonal variation were 
variables strongly influenced by non-forage factors (thermal environ
ment, precipitation events) that vary greatly between days and seasons. 

Average daily gain of steers in summer and winter of both years 
combined was 0.69 ± 0.1 and − 0.14 ± 0.08 kg*d − 1, respectively 
(McIntosh et al., 2021). Variation of two foraging behavior metrics 
(daytime distance traveled and time spent traveling) and one spatial 
distribution metric (area of the pasture explored) were correlated with 
ADG in both winter and late summer albeit with different strength 
(W<LS) and opposite signs (Fig. 2). Higher levels of diel variation in 
these behaviors favored ADG in winter but the opposite was true in 

Table 3 (continued ) 

22 Post-sunset area 
explored (ha) 

Andrew’s Monotone Chain Convex Hull algorithm was used to determine area explored for hours between sunset and midnight. The 
algorithm sorts coordinates in lexicographic order and determines the hull by encompassing any coordinate set that would produce a 
hull-angle <180 ◦ So for a polygon (v0, v1, …, vn-1), where xy-coordinates of a vertex are deemed vi, it is assumed that vn ––– v0 and that 

v-1 ––– vn-1, and the area of the simple polygon (convex hull) is: 
1
2
|
∑n− 1

i=0
δ(o, vi, vi+1)| =

1
2

⃒
⃒
⃒
⃒
⃒

∑n− 1
i=0

xi(yi+1 − yi+1)

⃒
⃒
⃒
⃒, where o = (0,0; the 

origin).   

Table 4 
Means and diel variation of 22 GPS-derived foraging behavior metrics of steers (n = 34) grazing a large Chihuahuan Desert pasture during two seasons in two 
consecutive years (n = 27 – 35 d). Variables were grouped into categories with similar units and ranked from least (# 1) to most (# 22) variable.    

Winter Late Summer 

GPS - derived behavior metrics GPS - derived behavior metrics Mean CV (%) CV Range (%) Rank Mean CV (%) CV Range (%) Rank 

Movement          
1 24-hour dist. traveled (km) 10.5 33.3 24.5 - 41.9 7 9.3 34.9 19.7 - 53.8 6 
2 Daytime dist. traveled (km) 5.6 42.7 34.0 - 54.4 8 5.4 39.3 27.6 - 52.2 7 
3 Pre-dawn dist. traveled (km) 1.5 53.5 53.7 - 128.8 10 1.6 64.2 38.7 - 101.7 12 
4 Post-sunset dis. traveled (km) 3.4 86.5 31.0 - 67.8 14 2.3 70.4 36.7 - 98.5 15 
5 Night: Day dist. traveled ratio 0.9 21.3 17.8 - 32.7 3 0.7 17.5 22.2 - 37.2 3 
6 24-h path sinuosity (SI) 0.2 65.5 54.9 - 87 12 0.2 65.3 39.3 - 87.3 13 
7 Daytime path sinuosity (SI) 0.4 47.5 38.5 - 59.8 9 0.4 48.9 30.9 - 63.2 8 
8 Pre-dawn path sinuosity (SI) 0.4 73.2 55.0 – 132.0 13 0.4 66.1 40.0 - 78.4 14 
9 Post-sunset path sinuosity (SI) 0.6 86.5 28.4 – 41.0 15 0.4 52.5 37.5 - 66.8 10 
Activity          
10 Time spent traveling (h) 2.2 60.8 45.1 – 77.0 11 1.8 60 39.1 - 86.9 11 
11 Time spent grazing (h) 8.2 13.8 10.2 - 18.3 2 8.2 14.8 10.9 – 20.0 2 
12 Time spent resting (h) 13.6 10.8 8.2 - 17.8 1 14 9.9 6.9 – 15.0 1 
13 Traveling: grazing ratio 0.3 21.5 32.2 - 64.7 4 0.2 21.7 34.0 - 74.6 5 
14 Time at drinker (h) 1.1 182.9 124.8 - 255.9 21 0.2 336.6 262.8 - 472.5 22 
15 Time w/in 200 m of a drinker (h) 2.7 98.9 58.6 - 144.4 18 2 119.9 62.3 - 177.7 17 
16 Time w/in 1 mile of drinker (h) 18.3 27.5 20.6 - 34.9 6 21.2 19 7.7 - 33.9 4 
17 Time w/in 2 miles of drinker (h) 5.6 90.7 68.2 - 131.6 16 2.7 180.5 94.6 - 286.4 20 
18 Visits to drinkers (#) 1.0 21.6 0.0 - 42.5 5 0.8 52.2 13.6 - 93.1 9 
Spatial distribution          
19 24-h area explored (ha) 188.7 93.2 57.2 - 103.4 17 116 113.1 59.6 - 146 16 
20 Daytime area explored (ha) 91.8 120.6 76.9 - 171.3 19 64.1 131 116.4 - 146.6 18 
21 Pre-dawn area explored (ha) 14.4 240.8 198.0 - 324.4 22 9.1 179.3 102.0 - 295.7 19 
22 Post-sunset area explored (ha) 42.9 125.4 92.2 - 171.5 20 19.7 184.6 120.9 - 298.3 21  
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summer (Fig. 2). This contrast may have reflected the stark difference in 
seasonal patchiness of forage quality (W>LS; see NDVI indices in 
Table 1). 

In winter, behaviors correlated with ADG exhibited intermediate to 
high levels of diel variation (rankings 8 to 19; Table 4). Increased diel 
variation in daytime travel (both in terms of distance and time invested 
in this activity) and daytime area covered were associated with greater 
ADG, partially supporting our third hypothesis. This variation was 
perhaps associated with more plasticity in searching behaviors, a pattern 
that could reflect greater selectivity at the patch and plant community 
scales (Bailey et al., 1996) and a trait that is likely advantageous in 
heterogeneous grazing environments (Allred et al., 2014). Low diel 

variation in average daytime distance traveled (< 40%), time spent 
traveling (< 60%) or daytime area explored (< 120%) could signal 
unfavorable grazing conditions (as well as imminent welfare challenges) 
for steers grazing desert rangeland during winter. 

In late summer, increasing diel variation in daytime distance trav
eled, time spent traveling, and 24 h area explored (i.e. day-to-day 
changes in search behavior) were all associated with declining ADG (r 
= − 0.77 to − 0.84; P < 0.05; Fig. 2), contrary to what we had predicted. 
Conversely, increasing diel variation in path sinuosity (i.e. possible 
plasticity in patch selection) was strongly correlated with increasing 
ADG (r = 0.93; P < 0.05; Fig. 2). Thus, day-to-day consistency in time 
and effort allocated to search for forage, but flexibility in movement 

Fig. 2. Pairwise correlations between diel variation in selected 
GPS-derived foraging behavior metrics and ADG of steers in 
winter (n = 17) and late summer (n = 15) grazing a large 
Chihuahuan Desert pasture for 25 to 35 day in winter and 27 to 
35 days in late summer in two consecutive years. We did not 
track the same animals in winter and late summer. Symbols on 
each graph represent a collared steer. Different symbols were 
used for Raramuri Criollo steers in cohorts 1 and 2 (circles and 
triangles, respectively) and crossbred steers in cohort 1 
(Waguli × Raramuri Criollo, squares) and cohort 2 (Brangus ×
Raramuri Criollo, crosses).   

M.M. McIntosh et al.                                                                                                                                                                                                                           



Livestock Science 255 (2022) 104801

8

trajectory (search patterns) were correlated with increasing ADG, likely 
due to the collective influence of these behavior metrics on intake levels 
and diet quality. Interestingly, diel variation in search behavior metrics 
were correlated with patterns of drinker visitation. Steers that gained 
the most weight tended to exhibit greatest flexibility in search behaviors 
and least day-to-day variation in number of visits to water (i.e. they 
visited the drinker only once on most days). The straightness index we 
used to assess path sinuosity is strongly influenced by the physical 
structure of vegetation (Benhamou 2004); therefore, diel variation in 
sinuosity may have been associated with a steer’s ability to either 
selectively forage in different vegetation types (shrub-dominated =
more sinuous path vs. grass-dominated = less sinuous path) or to 
opportunistically hone in on more nutritious forage patches or feeding 
stations along its daily foraging trajectory. Overall, high diel variation in 
daytime distance traveled (> 39%) or time spent traveling (> 60%) or 
24 h area explored (> 113.1%) or low diel fluctuation in path sinuosity 
(< 65%) during late summer could signal unfavorable conditions that 
could lead to reduced weight gains and potential animal wellbeing 
challenges. 

4. Management implications 

Behavior metrics more closely associated with forage intake pro
cesses, such as daily time spent grazing or resting, exhibited lowest diel 
variation levels and could be used to diagnose non-normal behavior of 
cattle on rangeland. Monitoring diel variation in search behaviors 
(summer and winter) or path sinuosity (summer) could provide further 
criteria to identify imminent weight gain challenges and prevent po
tential animal wellbeing problems. Researchers in the United States and 
elsewhere have gathered massive amounts of livestock geolocation data 
over the past 25 years (see references cited in Anderson et al., 2013, 
(Millward et al., 2020); Raynor et al., 2021). Our results suggest that an 
interdisciplinary coordinated effort to mine these data sets with 
cutting-edge methods used for big data analytics would accelerate the 
development of precision grazing tools for western US ranches. 
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Boykin, Kennith, 2008. Piñon-juniper woodland use by cattle in relation to weather 
and animal reproductive state. Rangeland Ecology & Management 61 (4), 394–404. 

Gong, Q., Cao, H., Cibils, A., Nyamuryekung’e, S., McIntosh, M., Continanza, F., 2020. 
December. GRAZETOOLS: a Set of Tools for Analyzing Livestock Behavior Using GPS 
data. In: AGU Fall Meeting 2020. AGU. 

Grandin, T., 2016. Evaluation of the welfare of cattle housed in outdoor feedlot pens. 
Vet. Anim. Sci. 1, 23–28. 

Guo, L., Welch, M., Dobos, R., Kwan, P., Wang, W., 2018. Comparison of grazing 
behaviour of sheep on pasture with different sward surface heights using an inertial 
measurement unit sensor. Comput. Electron. Agric. 150, 394–401. 

Halachmi, I., Guarino, M., Bewley, J., Pastell, M., 2019. Smart animal agriculture: 
application of real-time sensors to improve animal well-being and production. Annu. 
Rev. Anim. Biosci. 7, 403–425. 

Kilgour, R.J., 2012. In pursuit of “normal”: a review of the behaviour of cattle at pasture. 
Appl. Anim. Behav. Sci. 138, 1–11. 

Knight, C.W., Bailey, D.W., Faulkner, D., 2018. Low-cost global positioning system 
tracking collars for use on cattle. Rangel. Ecol. Manag. 71, 506–508. 

Laca, E.A., 2009. Precision livestock production: tools and concepts. Rev. Bras. Zootecn. 
38, 123–132. 

Launchbaugh, Karen, Howery, Larry, 2005. Understanding Landscape Use Patterns of 
Livestock as a Consequence of Foraging Behavior. Rangeland Ecology & 
Management 58 (2), 99–108. 

McIntosh, M.M., Cibils, A.F., Estell, R.E., Nyamuryekung’e, S., González, A.L., Gong, Q., 
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