State-and-Transition Model Development

Tamzen K. Stringham
University of Nevada, Reno
Multiple Approaches

Dig lots of holes - I will figure this out!

Hang out with the right people!

Check with the dog!
STM Fundamentals
Know the Subject Matter

State-and-Transition Models

(Stringham et al. 2003)
(Briske et al. 2008)

- Accommodates: Range Succession Model
 (Quantitative Climax Model)

- Accounts for transitions, thresholds, and multiple steady states

- Process based NOT vegetation
ECOLOGICAL PROCESS MODEL

THE BASICS

MINIMUM SCALE FOR STATE = ECOLOGICAL SITE

State A
- Plant Community Phase
- At-Risk Phase

State B
- At-Risk Phase

State C
- Restoration
- Threshold
STM Components

• What is a STATE?
• Threshold or Transition?
• Community Phase?
• Community Pathway?
• At-Risk Community Phase?
• Restoration Pathway
What is “process-based thinking?”

- Ecological Processes?
 - Range people think plants
 - Soil people think landscapes and soils
 - Hydrologist think flow patterns
 - Wildlife biologists think habitat
 - Administrators think $$$$$$
Ecological Processes
What is “process-based thinking?

• What is driving the creation and maintenance of what I see?

• Process = amount per time (rate)
 – Infiltration rate
 – Nutrient cycling
 – Energy capture
 – Soil erosion
 – Etc.
What is “process-based” thinking?

- Understanding that what we see is created by the functional capacity of ecological processes
- STMs describe ecological dynamics
Ecological Dynamics
Response to Disturbance

• Response to different disturbances
 – Fire
 – Grazing
 – Flooding
 – Drought
 – Insects
 – Invasive species, Etc.
 – Any combo of the above

• Resilience of Sites
Ecological Dynamics
Response to Disturbance

• Response to disturbances
 – Specie specific?
 • Know individual plant response
 – Dynamic soil properties
 • Vary by soil texture?

• Resilience
 – Climate
 – Soils
 – Plants
Ecological Dynamics
Response to Disturbance

Fire #1: injures or kills plants; may cause soil damage

Fire #2: eliminates residual plants; conversion to weed dominated

Fire #3: plant cover significantly reduced; wind erosion
STM Development ≠ Simple

Dig lots of holes - I will figure this out!

Hang out with the right people!

Check with the dog!
STM Development ≠ Simple

• Build a team of experts on the area
• Members
 – STM developer = team lead
 – Range ecologist = senior level (more than one)
 – Soil scientist = senior level
 – GIS specialist = field worthy
 – Wildlife biologist
 – Land Managers
Experience

Range Ecologist / STM

Range / Plant GIS Soils Range / Plant
Pitt Falls

- Assuming STM knowledge
- Lack of diversity of knowledge in team
- Inadequate literature review
- Limited field visits
- No peer review
- Unwillingness to consider new ideas
- EGOs
Experience is critical

Plant / soil relationships ≠ Disturbance response

Range / Plant GIS Soils Range / Plant

STM Knowledge
STM Development Process
Disturbance Response Groups

• Assemble the core TEAM

• Invite others to participate in office / field events

• Teach the STM concepts to the core TEAM
 – Multiple times; office & field
STM Development Process
Disturbance Response Groups

• MLRA or LRU scale
 – Build understanding of the climate, soils, plants
 • Soil scientist teach geology, soils, etc
 • GIS specialist create data layers of soil map units; fire events; roads; public / private land; etc.
STM Development Process

• Range sites
 – Describe Reference Condition = State 1
 – Describes landscape, climate, soils, plants, production
 – Describes response to disturbance
• Team analyzes each site & determines how it responds to disturbance
• Group sites
STM Development Process
Disturbance Response Groups

• Grouping process leads to building blocks for STM
 – Discussion involves
 • Soils and soil differences within groups
 – resilience
 • Plant species response to numerous disturbances
 • Response to repeated disturbance

• Modal site
 – greatest amount of acres mapped or
 – typical disturbance response of the group
STM Development Process

• NO range site
 – Soil survey / ESD team
 • Include a team member who specializes in STM development
 – Beyond Soil Survey / Site Development
 • STM Team will need to visit multiple locations of the same site to understand the potential states, transitions, community phases etc.
Draft STM Development – Tier 1

• STM expert develops the draft STM before field visits

• Team reviews
Draft STM Development – Tier 2

• Field Tours
 – Core TEAM participation required

• GIS layers
 – Locate sites; fire history; roads etc.
 – Modal focus
 • Multiple locations visited
 – Validate states, community phases, thresholds
 – All other sites in group
 • At least one location – multiple preferred
Draft STM Development – Tier 2

• Site verified
• Plant list
• Range Health Assessment
• Photos
• DISCUSSION
• DISCUSSION
• DISCUSSION
Tier 2 – Field Validation

Document Location: GPS
Map Unit
Soils
Elevation
Landform
Range Health
Production
Fire History
Disturbance: farming, ground water pumping, herbivory etc.
Draft STM Development – Tier 2

• STM Expert modifies model per DISCUSSION
• Draft ecological dynamics section
 States
 Community Phases
 Community Pathways
 Thresholds or Transitions
• Model reviewed by core TEAM
Tier 2 – Field Validation

Document
Location: GPS
Map Unit
Soils
Elevation
Landform
Range Health
Production
Fire History
Disturbance: farming, ground water pumping, herbivory etc.
Review

- Larger group
- Field
- Office
- Workshop
Conclusions

• STMs not simple
• Expert Team required
• STM concepts must be taught / reviewed
• Robust STMs require multiple site visits
• Develop draft STM in office
• Use to guide field discussions
• Revise
• Peer Review - Revise
• STMs ALWAYS DRAFT