Shrub Invasion of Grassland: Recruitment Is Continuous and Not Regulated by Herbaceous Biomass or Density

Joel R. Brown; Steve Archer

Stable URL:
http://links.jstor.org/sici?sici=0012-9658%28199910%2980%3A7%3C2385%3ASIOGRI%3E2.0.CO%3B2-K

Ecology is currently published by Ecological Society of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/esa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.
Abstract. Proliferation of woody plants in grasslands and savannas since the 1800s has been widely documented. In the southwestern United States, increased abundance of honey mesquite (Prosopis glandulosa var. glandulosa) has been attributed to heavy grazing by livestock. Here, we test the hypothesis that P. glandulosa invasion of grasslands requires, first, reductions in herbaceous biomass and density such as those that accompany livestock grazing and, second, episodes of high soil moisture availability.

No combination of grass density (nonmanipulated or reduced 50%) or defoliation (none, moderate, heavy) significantly affected P. glandulosa seedling emergence within a watering regime (natural and supplemented) at our field site in semiarid southern Texas. Seedling emergence on plots receiving only natural rainfall was high (42%), despite the fact that precipitation was substantially below normal. Supplemental watering, to generate moisture levels approximating years of unusually high annual rainfall, increased emergence to 59%. Seedling survival after 2 yr was high (62–77%) and statistically comparable across the density, defoliation, and watering treatments. Net photosynthesis (A_c) of 1-yr-old seedlings was enhanced by supplemental watering, but reductions in grass density or biomass had little effect on seedling A_c or xylem water potential. Height, aboveground biomass, and leaf area were comparable among 1- and 2-yr-old seedings across all density, defoliation, and watering combinations.

High seedling emergence and survival on unwatered plots, even during a “drought year,” suggests that Prosopis recruitment is not contingent upon unusual or episodic rainfall. Reductions in biomass and density of herbaceous vegetation had no influence on seedling emergence, growth, or survival, suggesting that Prosopis invasion is minimally influenced by grass competition. Historic grazing at this site appears to have altered herbaceous composition and reduced above- and belowground biomass production below the threshold level required for competitive exclusion of woody vegetation. Such data suggest that rates and patterns of seed dispersal may be the primary determinants of P. glandulosa encroachment on present-day landscapes in semiarid regions. Minimizing livestock dispersal of seed (in the case of leguminous shrubs) and maintenance of an effective fire regime (through production of fine fuels) may be crucial for sustaining herbaceous composition and production in grazed systems prone to invasion by unpalatable woody plants.

Key words: Chloris cucullata; competition of invasive woody plants in grasslands; grazing; photosynthesis; Prosopis glandulosa; savanna; seedling establishment; tree-grass interactions; woody plant invasion; xylem water potential.

INTRODUCTION

Trends toward increasing woody plant abundance in temperate and tropical grasslands and savannas in recent history have been reported worldwide (Archer 1994, McPherson 1997). Although this phenomenon has been widely recognized (e.g., Grover and Musick 1990) and has significant implications for livestock production systems (Scifres 1980, Scifres et al. 1983), wildlife habitat (Ben-Sharer 1992), and biogeochemistry (Schlesinger et al. 1990), surprisingly little is known of the rates, dynamics, patterns, or successional processes involved in these vegetation changes. Climatic change and changes in historical atmospheric CO$_2$ concentrations, fire regimes, rodent populations, and livestock grazing have been suggested as driving forces in this shift in vegetation (Archer et al. 1995, Polley et al. 1996, Brown et al. 1997, Weltzin et al. 1997). While all of these factors have interacted to produce vegetation change, some studies (e.g., Madany and West 1983) have clearly demonstrated that livestock grazing has been a primary factor.

For woody plants with potentially long life-spans and low post-establishment mortality rates, seedling recruitment is probably the most critical stage in the life history (Harper 1977). A variety of direct and indirect effects of livestock grazing may interact to promote woody plant seedling establishment in grass commu-
nities (Archer 1995a). Reductions in the density and biomass of herbaceous vegetation have been shown to increase the probability of seedling success in old fields and forests (i.e., Goldberg and Werner 1983, Maguire and Forman 1983, McEvoy 1984, De Steven 1991a, b). Changes in species composition and reductions in herbaceous plant basal area, density, and above- and belowground biomass known to accompany chronic livestock grazing (Heitschmidt and Stuth 1991) might therefore create opportunities for tree and shrub seedling establishment in grasslands. Although it is widely assumed that these grazing-induced changes in community structure and function will increase grassland susceptibility to woody plant encroachment, these potential controlling factors have not been adequately quantified.

Experimental studies of woody plant invasion of semiarid grasslands that focus on the critical seedling establishment phase are relatively few and have been primarily controlled environment studies. Such studies predict that reductions in grass competition (achieved via reductions in biomass associated with defoliation) will promote woody plant seedling establishment (van Auken and Bush 1987, 1988, 1989, Polley et al. 1994). Some field studies support this contention (Schultz et al. 1995, McPherson 1993, Bush and van Auken 1995), but others do not (Brown and Archer 1989, Schmidt and Stubbendieck 1993, O'Connor 1995a). Here, we investigated the extent to which changes in herbaceous density and biomass influence woody plant seedling establishment in grasslands under field conditions.

Climatic variability and the unpredictable occurrence of extreme climatic events may interact with grazing to effect rapid shifts in plant recruitment and mortality and change the balance between grasses and woody plants (e.g., Wiegand et al. 1995). Periods of elevated rainfall may trigger episodes of seed production and seedling establishment of woody plants in grasslands (McPherson and Wright 1990, Turner 1990, Harrington 1991, Carter 1994), while drought may promote grass die-off (O'Connor 1993), but have little effect on tree or shrub persistence (Carter 1964, Neilson and Wullstein 1985). It is not clear how rainfall variability might constrain, accentuate, or mitigate grazing influences on woody plant emergence and establishment in grasslands.

In southwestern North America, many temperate, subtropical, and desert grasslands and savannas present at the time of Anglo-European settlement are now shrublands or woodlands dominated by the tree legume, honey mesquite (Prosopis glandulosa var. glandulosa Torr.) (Archer 1989, 1994). The encroachment of P. glandulosa into grasslands and savannas has had significant socioeconomic and environmental impacts on these lands that have been predominantly used for livestock grazing (Fisher 1950, Simpson 1977). An understanding of processes regulating P. glandulosa seedling recruitment is, therefore, a critical first step in developing management strategies to mitigate shrub encroachment. In this study we examined simulated grazing X soil moisture x grass competition interactions on P. glandulosa seedling emergence and short-term survival. We hypothesized that under conditions of high soil moisture, competition with grasses would be minimal and P. glandulosa would successfully germinate and establish regardless of herbaceous biomass and density. This would be the anticipated scenario if seedling establishment were “episodic” and confined to years when rainfall is unusually high. We hypothesized that, conversely, under conditions of low soil moisture (“normal” or below normal rainfall) competition with grasses would be intense and P. glandulosa germination and establishment would occur only with a reduction in grass biomass or density, such as that which typically accompanies chronic livestock grazing. To test these hypotheses, we conducted a factorial field experiment, whereby seeds of P. glandulosa were planted into plots maintained at two graminoid densities (nonmanipulated and reduced 50%), receiving one of three levels of defoliation (none, moderate, and heavy) and one of two watering regimes (natural and supplemented).

MATERIALS AND METHODS

Study site

Research was conducted on the Texas Agricultural Experiment Station, La Copita Research Area, in Jim Wells County, 15 km SW of Alice, Texas (27°40' N, 98°12' W; elevation 80 m) in the eastern Rio Grande Plains of the Tamaulipan Biotic Province. Contemporary vegetation of the region has been described by Davis and Spicer (1965). Uplands at the study site, which have been grazed by cattle since the late 1800s, are savanna parklands consisting of discrete clusters of woody plants organized beneath Prosopis glandulosa (plant nomenclature follows Correll and Johnston 1979). Inter-cluster spaces were dominated by perennial grasses, primarily Chloris coccinate. See Archer (1995b) for details on plant community structure and successional patterns. Soils on the study site were fine sandy loams (Rune series) on 1-3% slopes (USDA 1979). Climate is subtropical, with warm winters and hot summers. Mean annual temperature is 22.4°C, with a growing season of 289 d. Mean annual precipitation (720 mm) is highly variable (CV = 35%). When tropical depressions and hurricanes in the Gulf of Mexico spawn inland storms, annual rainfall may exceed 2600 mm. Available weather records for Alice, Texas, indicate there have been five such years between 1912 and 1997 (1919 [3312 mm], 1935, 1941, 1942, and 1971).

Field experiments

In May 1984 livestock were excluded from a 60 X 60 m area. Seventy-two 2 X 1 m plots were perma-
nently marked within this exclosure. One-half of the plots (hereafter referred to as “watered” plots) received supplemental water applied every other week (~10 cm each application) from April through October 1984 and 1985 via low pressure irrigation. Our goal was to elevate moisture to levels approximating the highest annual rainfall years in the weather records for this area (2600–3312 mm). The other half of the plots (hereafter referred to as “unwatered”) received only natural rainfall. Approximately 10 m separated the watered and unwatered plots. Watered plots were located downslope from unwatered plots to eliminate the possibility of run-on. Herbaceous density and defoliation treatments were randomly assigned to plots within watering treatments.

Density was altered in half of the plots in each watering treatment by placing a gridded 2 × 1 m frame over each plot and killing 50% of the plants in each 0.25-m² block with a nonselective, foliar-active herbicide (glyphosate [N-(phosphonomethyl) glycine]). Plant density was estimated 30 d later using the gridded plot frame to map individual plants, and herbicide was reapplied as necessary. Post-treatment bare ground cover percentages averaged 51 ± 6% in the control plots vs. 75 ± 7% in the reduced density plots. The relative composition of species in density-altered plots remained similar to that of the normal-density plots.

Three levels of defoliation (none, moderate [20 cm stubble height], and heavy [5 cm stubble height]) were imposed by clipping monthly throughout the experiment. All clipped biomass was removed from plots. Thus, we imposed a 12-treatment factorial design (three levels of defoliation, two levels of herbaceous density, two levels of watering). Each of the 12 treatments was replicated six times (total = 72 plots).

P. glandulosa emergence, establishment and growth

Prior to the initiation of the experiment, no P. glandulosa plants were inside the exclosure. In early July 1984, 30 seeds were planted at a depth of 2 cm in each 2 × 1 m plot. Laboratory viability trials conducted at 25°C on a random subsample (N = 1000 seeds) of the seed lot indicated that 96% were germinable. Seedling emergence was determined 2 wk after planting. Seedling survivorship was noted in October 1984 and again in April and August of 1985. A second cohort of seeds (laboratory germinability = 95%) was planted in late June 1985, and their growth and survival monitored for the remainder of that field season. These planting dates roughly coincide with periods of P. glandulosa seed production at this field site.

Seedling performance was estimated for seedlings in four of the 12 treatment combinations: unwatered—normal density—no defoliation (UNN = control), unwatered—low density—heavy defoliation (ULH), watered—normal density—no defoliation (WNN), and watered—low density—heavy defoliation (WLH). For each of these treatments, net photosynthesis (Aₙ) and xylem water potential (Ψ) of seedlings were quantified on six dates during 1985. Diurnal measurements of gas exchange (at 0900, 1200, and 1600) on clear days in May, June, July, and August were made on upper/lower leaf surfaces with a portable photosynthesis system (LI-6000, LI-COR, Inc., Lincoln, Nebraska, USA) and a 0.25-L cuvette. At least three P. glandulosa seedlings per treatment were followed through each day.

Xylem water potential was determined with a pressure chamber (Scholander et al. 1965). Seedlings were placed in plastic bags containing moistened filter paper after excising to minimize water loss during pressure chamber readings. Seedling Ψ was not checked during June 1985 to ensure that an adequate number of seedlings would be available for measurements during the more stressful period of the growing season. Individual P. glandulosa seedlings destructively harvested for Ψ measurements were used to determine aboveground biomass, height, and leaf area.

Soil water content in plots (15 and 30 cm and at 30 cm increments to 1.5 m depth) was estimated (neutron scattering method, van Bavel 1958) in each of the four treatments where plant performance measurements were made (UNN, ULH, WNN, and WLH). Neutron access tubes were read monthly. Soil temperature was estimated on the same plots at 5 and 20 cm depths, using thermocouples (N = 4). Aboveground herbaceous biomass was estimated by clipping 0.25-m² plots (N = 10) in June 1984 and June 1985 at peak standing crop.

Analysis of variance (ANOVA) of arcsine transformed data (Snedecor and Cochran 1980) was used to test for differences in seedling emergence and survival among the 12 treatments. We used a split-plot ANOVA model with water (two levels) as the main treatment, and grass density (two levels) and grass defoliation (three levels) as subplot treatments. Statistical differences in Aₙ (P ≤ 0.05) among the four treatments (UNN, ULH, WNN, WLH) were tested with repeated measures analysis of variance (Keppel 1982). Differences in mean Ψ, standing crop biomass, and soil moisture (by depth) among these treatments were tested with standard ANOVA.

RESULTS

Aboveground herbaceous biomass was comparable for all plots when the experiment was initiated in June 1984 (Table 1). Supplemental watering subsequently increased aboveground herbaceous biomass relative to nonsupplemented (unwatered) control plots. However, density reduction and clipping combinations offset watering effects, such that there were no differences on any date between WLH plots and UNN plots. Standing crop biomass on the ULH plots was significantly less than all other treatments. Standing crop on WNN plots was significantly greater than all others during 1985. P. glandulosa seedlings were thus exposed to herba-
TABLE 1. Standing crop biomass (g/m²) on watering, herbaceous density, and clipping treatments in summer 1984 at the start of the experiment and in 1985.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Standing crop biomass (g/m²) 1984</th>
<th>Standing crop biomass (g/m²) 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULH</td>
<td>262± (18)</td>
<td>185± (13)</td>
</tr>
<tr>
<td>UNN</td>
<td>278± (20)</td>
<td>292± (21)</td>
</tr>
<tr>
<td>WLH</td>
<td>255± (21)</td>
<td>263± (19)</td>
</tr>
<tr>
<td>WNN</td>
<td>245± (21)</td>
<td>453± (25)</td>
</tr>
</tbody>
</table>

Notes: Values are means of six, 2 × 1 m plots (1 SE in parentheses). Treatments are: unwatered, low density, heavy defoliation (ULH); unwatered, normal density, no defoliation (UNN); watered, low density, heavy defoliation (WLH); and watered, normal density, no defoliation (WNN). N = 10 plots per treatment. Means within a column followed by different letters were statistically different (P < 0.05).

aceous aboveground biomass ranging from 185 to 453 g/m².

Annual rainfall for 1984 (506 mm) was well below the long-term average (720 mm); rainfall in 1985 (760 mm) was slightly above normal. Rainfall during the months preceding the 1984 P. glandulosa planting was well below normal (35% of long-term mean for January-June), whereas monthly rainfall for the months preceding the 1985 planting was well above normal (Fig. 1).

Supplemental watering increased soil moisture content relative to unwatered controls, and date × watering treatment interactions were significant (P ≤ 0.05, Fig. 2). Neither plant density nor level of defoliation significantly influenced soil moisture, so data in Fig. 2 were pooled across these treatments. At the time of planting (July 1984), soil water content at 15 cm was significantly greater in the watered plots (37%) than in the unwatered plots (20%).

Analysis of variance indicated no significant differences in soil temperatures within a watering treatment. Soil temperature data were therefore pooled across defoliation–density treatments. Soil temperature date × watering treatment interactions were significant at each depth (P < 0.05). Soil temperature at 5 cm was significantly (P < 0.05) reduced on watered plots in 1984 and after 2 July, 1985 (Fig. 3). At the time of planting, soil temperatures at 5 cm were significantly (P < 0.05) greater on unwatered plots compared to watered plots. Temperatures at 20 cm followed a similar pattern, although the magnitude of the differences was less. Peak soil temperatures in the upper 5 cm typically exceeded 35–40°C each year during the period of P. glandulosa seed germination.

Prosopis seedling emergence and establishment

P. glandulosa seedling emergence in unwatered plots (42% and 44% in 1984 and 1985, respectively) was significantly (P < 0.01) less than that which occurred in plots receiving supplemental water (59% and 62%, Table 2). However, watering did not significantly enhance first-year survival of seedlings emerging in 1984 (P = 0.06) or 1985 (P = 0.09) nor second year survivorship of the 1984 cohort (P = 0.08). Density and level of defoliation of herbaceous vegetation affected neither emergence (P = 0.15 and 0.24, respectively)
nor survival ($P = 0.28$ and 0.11, respectively, for first-year survival; $P = 0.65$ and 0.71, respectively, for second-year survival) of seedlings within a watering regime, even though differences in aboveground biomass among those treatments were significant (Table 1). Interaction terms were nonsignificant, with one exception: water × density for second-year seedling survival. In this instance, herbaceous density reductions had a slight negative effect on second-year survival among watered seedlings (85 vs. 82%), whereas among unwatered seedlings, experimental reductions in grass density had a slight positive effect (75 vs. 82%, Table 2).

Seasonal and diurnal patterns of net photosynthesis (A_s) and xylem water potential (Ψ) of 1-yr-old seedlings generally reflected seasonal variation in soil moisture (Tables 3 and 4). There were no statistical differences across watering treatments during May, when soil
FIG. 3. Mean soil temperature (°C, \(N = 4\)) at 5- and 20-cm depths on plots receiving only natural rainfall ("unwatered") and on plots receiving supplemental watering ("watered").

TABLE 2. Emergence (percentage) of two *P. glandulosa* seedling cohorts (1984 and 1985) and survival (percentage) of the 1984 cohort through 1985 in plots manipulated with respect to soil moisture and the density and level of defoliation of herbaceous plants.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Emergence (%)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watered†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal density†</td>
<td>59</td>
<td>62</td>
</tr>
<tr>
<td>No defoliation</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>Moderate defoliation</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>Heavy defoliation</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>Reduced density†</td>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td>No defoliation</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>Moderate defoliation</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>Heavy defoliation</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>Unwatered†</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Normal density†</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>No defoliation</td>
<td>43</td>
<td>46</td>
</tr>
<tr>
<td>Moderate defoliation</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>Heavy defoliation</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>Reduced density†</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>No defoliation</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Moderate defoliation</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Heavy defoliation</td>
<td>38</td>
<td>43</td>
</tr>
</tbody>
</table>

Significance

- \(P < 0.01\)
- \(P < 0.01\)
- \(P < 0.06\)
- \(P < 0.09\)
- \(P < 0.08\)

Notes: For percentage emergence, means within a column followed by different letters were statistically different \((P < 0.05)\). There were no significant differences among means within columns for percentage survival. Significance levels for within-cohort full-model ANOVAs are shown at the bottom of each column.

† Pooled means.
moisture levels (Fig. 2) were comparable. However, as water in the soil above 90 cm began to decline through June and July in the unwatered treatments, differences in physiological parameters became significant. Seedlings with supplemental water typically maintained higher levels of A_n (Table 3) and higher Ψ (Table 4), relative to those not receiving supplemental water. Within a watering treatment, density and defoliation of herbaceous vegetation had virtually no influence on A_n or Ψ. By 6 August seedlings on both watered and unwatered plots had begun to shed leaves, even though soil moisture in the watered treatments remained quite high compared to the unwatered plots (Fig. 2). By 20 August, seedlings on both watered and unwatered plots had shed all leaves. Ψ did not differ among treatments until July (Table 4). Predawn Ψ was similar among seedlings regardless of treatment, except on 2 July and 16 July, when soil moisture was at the lowest level in unwatered plots.

Seedling height near the end of the first growing season was statistically comparable between treatments (pooled mean ± se for 1984 cohort = 3.6 ± 0.3 cm; 1985 cohort = 3.9 ± 0.4 cm). Aboveground biomass of the 1984 $P. \text{glandulosa}$ cohort increased 38% between May and August 1985 (Table 5). However, height, leaf area, and aboveground biomass of these seedlings were not significantly different among treatments.

Discussion

The intensity of grass–woody plant interactions should be mediated by resource availability (Schles and Archer 1997). However, our field experiments indicated that reductions in grass biomass, achieved by defoliation and density reduction, had minimal influence on $P. \text{glandulosa}$ emergence, aboveground growth, or survival. In addition, high rates of emergence on unwatered plots occurred even during months and years of substantially below-normal rainfall. Results therefore suggest that emergence and establishment of $P. \text{glandulosa}$ can potentially occur in most years on this site, regardless of resource availability and livestock grazing pressure on grasses. This experimental evidence is consistent with results of $P. \text{glandulosa}$ establishment trials in more mesic areas of central Texas, where we observed high rates of emergence (43–60%) and survival (74–97%) in experimental treatments spanning a similar range of aboveground biomass levels (Brown and Archer 1989).

Seedling establishment was not episodic

Discussions of vegetation change in drylands often emphasize event-driven or episodic processes (see Watson et al. 1996). The coefficient of variation of precipitation in the subtropical savannas of southern Texas (35%) is among the highest reported for semiarid regions of the world (Le Houerou and Norwine 1988). Although mean annual rainfall at our study site is 760 mm, tropical depressions and hurricanes in the Gulf of Mexico have generated annual rainfalls as high as 3300 mm. State Climatologist records for Alice, Texas, indicate there have been five years since 1912 when annual rainfall has exceeded 2600 mm (1919, 1935, 1941, 1942, 1971). We therefore hypothesized that establish-
ment of woody plants such as *P. glandulosa* might be confined to such years. However, in our study, rates of *P. glandulosa* emergence on unwatered (natural rainfall only) plots were high (38–48%), even during months and years of substantially below-normal rainfall. This is, perhaps, not surprising, given that *P. glandulosa* is well-adapted to hot desert regions where mean annual rainfall is much lower than that in the central- and southern-Texas portion of its geographic range. In our study, increasing soil moisture enhanced recruitment by increasing seedling emergence rather than seedling survival. Supplemental watering increased emergence by 18%, perhaps by ameliorating soil temperatures. The optimum temperature for *P. glandulosa* germination is 25–30°C (Haas et al. 1973) and soil temperatures in excess of 35°C reduce emergence by retarding imbibition (Scifres and Brock 1969). Temperatures at 5 cm on watered plots were <32°C, whereas temperatures on unwatered plots exceeded 38°C after sowing.

The size and age-class distribution of *P. glandulosa* on this site shows no indication of episodic establishment or mortality (Archer 1989, Boutton et al. 1998) and confirms our experimental assessment that *P. glandulosa* recruitment could have been relatively continuous over the last 100 yr in this bioregion. This contrasts with observations from more arid systems, where establishment of *Prosopis* (Turner 1990; R. E. Miller and L. F. Huenneke, unpublished manuscript) and other woody plants (Harrington 1991, O’Connor 1995a, b, Wiegand et al. 1995) may occur rarely and during years with unusually high rainfall. Even so, “continuous” recruitment of shrubs in relatively arid systems may be more important than the dogma of “event-driven” or episodic recruitment would suggest (Watson et al. 1997). Management and modeling of grass and woody plant interactions in dryland systems should therefore be cognizant of the need to balance appropriately the effects of infrequent, unpredictable events, as measured at decadal time scales, and the effects of more continuous processes, as measured in time scales of years (Watson et al. 1996). Given the potentially differential effects of increases in atmospheric CO₂ concentration (e.g., Polley et al. 1994, 1996) and changes in rainfall seasonality (Brown et al. 1997) on growth of woody plants and grasses, the reconstruction and extrapolation of woody plant seedling establishment dynamics must be made cautiously.

Herbaceous plants had little effect on Prosopis recruitment

P. glandulosa successfully emerged and established across a broad range (185–453 g/m²) of aboveground herbaceous biomass levels achieved by clipping and by reducing plant density. The fact that *P. glandulosa* seedling gas exchange, water relations, height growth, and survival were minimally influenced by herbaceous manipulation may reflect the ability of *P. glandulosa* quickly to elongate tap roots and access soil moisture beyond the zone effectively exploited by grasses (Brown and Archer 1990). Although seedlings on wa-

Table 4. Xylem water potential (MPa) of *P. glandulosa* seedlings on six dates in 1985. Seedlings occurred on plots varying in their watering regime, herbaceous plant density, and level of defoliation (abbreviations as in Table 1).

<table>
<thead>
<tr>
<th>Time of day and treatment</th>
<th>Date (1985)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 May</td>
<td>22 May</td>
<td>2 July</td>
<td>16 July</td>
<td>6 August</td>
</tr>
<tr>
<td>0600</td>
<td>ULH</td>
<td>-0.5 (0.1)</td>
<td>-0.5 (0.1)</td>
<td>-1.3* (0.2)</td>
<td>-1.8* (0.4)</td>
</tr>
<tr>
<td></td>
<td>UNN</td>
<td>-0.5 (0.1)</td>
<td>-0.5 (0.1)</td>
<td>-1.3* (0.3)</td>
<td>-1.4* (0.2)</td>
</tr>
<tr>
<td></td>
<td>WLH</td>
<td>-0.5 (0.0)</td>
<td>-0.5 (0.1)</td>
<td>-0.3* (0.0)</td>
<td>-0.3* (0.1)</td>
</tr>
<tr>
<td></td>
<td>WNN</td>
<td>-0.5 (0.1)</td>
<td>-0.5 (0.0)</td>
<td>-0.3* (0.1)</td>
<td>-0.2* (0.0)</td>
</tr>
<tr>
<td>0900</td>
<td>ULH</td>
<td>-1.8 (0.2)</td>
<td>-1.3 (0.2)</td>
<td>-4.0* (0.5)</td>
<td>-5.0* (0.6)</td>
</tr>
<tr>
<td></td>
<td>UNN</td>
<td>-1.7 (0.3)</td>
<td>-1.4 (0.3)</td>
<td>-4.5* (0.4)</td>
<td>-4.1* (0.5)</td>
</tr>
<tr>
<td></td>
<td>WLH</td>
<td>-1.6 (0.3)</td>
<td>-1.2 (0.2)</td>
<td>-1.4b (0.2)</td>
<td>-1.8* (0.4)</td>
</tr>
<tr>
<td></td>
<td>WNN</td>
<td>-1.5 (0.2)</td>
<td>-1.3 (0.1)</td>
<td>-1.4b (0.1)</td>
<td>-1.7* (0.3)</td>
</tr>
<tr>
<td>1200</td>
<td>ULH</td>
<td>-2.3 (0.3)</td>
<td>-1.8 (0.3)</td>
<td>-4.3* (0.4)</td>
<td>-4.9* (0.5)</td>
</tr>
<tr>
<td></td>
<td>UNN</td>
<td>-2.4 (0.4)</td>
<td>-1.9 (0.4)</td>
<td>-4.6* (0.5)</td>
<td>-4.1* (0.5)</td>
</tr>
<tr>
<td></td>
<td>WLH</td>
<td>-1.9 (0.4)</td>
<td>-2.1 (0.4)</td>
<td>-2.8b (0.3)</td>
<td>-2.7b (0.4)</td>
</tr>
<tr>
<td></td>
<td>WNN</td>
<td>-1.8 (0.3)</td>
<td>-1.9 (0.3)</td>
<td>-2.3b (0.4)</td>
<td>-2.3b (0.3)</td>
</tr>
<tr>
<td>1600</td>
<td>ULH</td>
<td>-2.1 (0.3)</td>
<td>-1.6 (0.3)</td>
<td>-4.2* (0.4)</td>
<td>-4.7* (0.4)</td>
</tr>
<tr>
<td></td>
<td>UNN</td>
<td>-2.0 (0.3)</td>
<td>-1.6 (0.4)</td>
<td>-4.3* (0.3)</td>
<td>-4.1* (0.5)</td>
</tr>
<tr>
<td></td>
<td>WLH</td>
<td>-1.8 (0.2)</td>
<td>-2.0 (0.4)</td>
<td>-2.4b (0.3)</td>
<td>-2.5* (0.3)</td>
</tr>
<tr>
<td></td>
<td>WNN</td>
<td>-1.7 (0.4)</td>
<td>-1.9 (0.3)</td>
<td>-2.4b (0.1)</td>
<td>-2.4* (0.2)</td>
</tr>
</tbody>
</table>

Notes: Values are means (± 1 SE) of a minimum of three plants. Within a column, means for a given date-and-time combination followed by the same letter are not significantly different (P ≤ 0.05; there were no significant differences among means at any time of day on 3 May or 22 May). ANOVA indicated significant treatment × time-of-day interactions on each date; treatment main effects were significant in July and August.
Table 5. Mean (± 1 SE) height (cm), aboveground biomass (mg), and leaf area (cm²) of Prosopis seedlings emerging in July 1984.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Height (cm)</th>
<th>Biomass (mg)</th>
<th>Leaf area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>September</td>
<td>3.6 ± 0.3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1985</td>
<td>May</td>
<td>4.2 ± 0.7</td>
<td>90.8 ± 5.7</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>5.4 ± 1.1</td>
<td>125.5 ± 7.8</td>
<td>1.1 ± 0.4</td>
</tr>
</tbody>
</table>

Notes: There were no significant differences (P > 0.05) among density, defoliation, or watering treatments, so data were pooled. Seedlings were not destructively harvested in 1984. Height values represent all seedlings (N > 400); biomass and leaf area values taken from plants harvested for gas exchange and water relations data (N = 50).

The effects of herbaceous vegetation on woody plant recruitment are variable, and multiple mechanisms can operate in complex ways to influence emergence and establishment (Burton and Bazzaz 1991, De Steven 1991a, b). While grasses may reduce emergence, growth, and survival of woody seedlings (Brown et al. 1989, Martinez and Fuentes 1993, McPherson 1993), including Prosopis (Bash and van Auken 1989, 1995, van Auken and Bush 1989, 1997, Polley et al. 1994), the competitive reduction may not be large, and high mortality or complete exclusion may seldom occur. For example, Schmidt and Stubbendieck (1993) found that although survival of evergreen tree (Juniperus virginiana) seedlings was highest in grazed pastures (57%), survival of seedlings in pastures that had not been grazed for >50 yr was still 40%. In South African grasslands, Acacia karroo seedlings were capable of establishing and surviving within dense grass swards (O’Connor 1995a). In Argentinean grasslands, survival and growth of P. caldenia seedlings on sites protected from grazing exceeded that of seedlings on sites subjected to long-term heavy grazing (Distel et al. 1996). In the Post Oak Savanna of central Texas, Prosopis seedling emergence was low (6–8%), but not nil, on plots protected from grazing for 40 yr (Brown and Archer 1989), and only moderate defoliation of grasses was required to produce an eight-fold increase in emergence. Subsequent survival of all seedlings exceeded 80%, implying that thresholds for biotic regulation of Prosopis emergence and establishment (Archer 1989, 1995a) are exceeded at low levels of herbaceous disturbance.

Traditional rangeland management practices are predicated on the notion that “proper grazing” can minimize woody plant invasion problems. The implicit assumption is that adjusting stocking rates to maintain grass composition, cover, and biomass will minimize tree and shrub encroachment. The results from numerous grass-shrub seedling competition container experiments cited earlier substantiate this assumption. However, data from this field competition experiment and others (e.g., Brown and Archer 1989, Goerner 1993, Schmidt and Stubbendieck 1993, O’Connor 1995a, Weltzin et al. 1997, Brown and Carter 1998) suggest grazing management strategies to mitigate invasion by unpalatable woody plants should not focus on grass-shrub seedling interference, but instead on minimizing seed dispersal (in the case of leguminous shrubs where livestock may be primary vectors) and on maintaining an effective fire regime.

In summary, the results of our field experiments concur with field observations that indicate woody plant encroachment into grasslands can be high, regardless of grazing pressure or herbaceous composition and biomass (Brown 1950, Paulsen 1950, Humphrey and Mehrhoff 1958, Smith and Schmutz 1975, Bragg and Hulbert 1976, Meyer and Bovey 1982, Hennessy et al. 1983, Towne and Owensby 1984, Smeins and Merrill 1988). Grass utilization by grazing animals may not be a prerequisite for woody plant encroachment, except as described below.

Why has Prosopis abundance increased in recent history?

Given the relative ease of establishment and the high survival rates of woody plants such as Prosopis glandulosa in grassland and savanna systems, why has their abundance increased only recently? The spread of Prosopis glandulosa into Holocene grasslands may have been limited by a lack of effective dispersal agents, a constraint overcome by the introduction of horses, cattle, and sheep into North America (Brown and Archer 1987). Alternatively, Prosopis glandulosa, which is capable of vegetative regeneration within 2 wk of germination (Sci- fers and Hahn 1971), tolerant of repeated top removal during its first growing season (Weltzin et al. 1998), and tolerant of hot fires by its second and third year of growth (Wright et al. 1976), may have always been present in southwestern grassland landscapes as a “seedling bank,” but its dominance suppressed by pe-
periodic fire. Reductions in fire frequency and intensity resulting from reductions in fine fuel mass and continuity associated with heavy, continuous livestock grazing (Baisan and Swetnam 1990, Savage and Swetnam 1990, Covington and Moore 1994) would then have allowed established, but suppressed, woody plants such as *P. glandulosa* to increase in stature, express dominance over the surrounding herbaceous vegetation, and attain seed-bearing size. In the absence of fire, *P. glandulosa*'s expansion into mesic and semiarid grassland with a history of livestock grazing may be regulated more by rates and patterns of seed dispersal and the presence or absence of “seedling predators” (Weltzin et al. 1997) than by abiotic conditions or herbaceous competition.

Acknowledgments

We thank Jerry Stuth for the use of equipment and travel funds. G. Harrington and J. Scanlan reviewed earlier drafts of the manuscript and made helpful comments. The submitted manuscript benefited from the constructive comments provided by A. Black and two anonymous reviewers.

Literature Cited

Goerner, C. A. 1993. Aboveground interference, litter and light quality influence on *Prosopis glandulosa var. glandulosa* establishment in grasslands. Thesis, Texas A&M University, College Station, Texas, USA.

van Bavel, C. M. H. 1958. Measurement of soil moisture content by the neutron scattering method. USDA Research Service Bulletin 4124, Beltsville, Maryland, USA.

You have printed the following article:

Shrub Invasion of Grassland: Recruitment Is Continuous and Not Regulated by Herbaceous Biomass or Density

Joel R. Brown; Steve Archer

Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199910%2980%3A7%3C2385%3ASIOGRI%3E2.0.CO%3B2-K

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library’s website or contact a librarian to learn about options for remote access to JSTOR.

Literature Cited

Have Southern Texas Savannas Been Converted to Woodlands in Recent History?

Steve Archer

Stable URL: http://links.jstor.org/sici?sici=0003-0147%28198910%29134%3A4%3C545%3AHSTSBC%3E2.0.CO%3B2-L

Tree Seedling Emergence on Interactive Temperature and Moisture Gradients and in Patches of Old-Field Vegetation

Philip J. Burton; F. A. Bazzaz

Stable URL: http://links.jstor.org/sici?sici=0002-9122%28199101%2978%3A1%3C131%3ATSEOIT%3E2.0.CO%3B2-6

Woody Plant Growth Related to Planting Time and Clipping of A C_4 Grass

J. K. Bush; O. W. Van Auken

Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199507%2976%3A5%3C1603%3AWPGRT%3E2.0.CO%3B2-%23
Experiments on Mechanisms of Tree Establishment in Old-Field Succession: Seedling Emergence
Diane De Steven
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199106%2972%3A3%3C1066%3AEOMOTE%3E2.0.CO%3B2-R

Experiments on Mechanisms of Tree Establishment in Old-Field Succession: Seedling Survival and Growth
Diane De Steven
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199106%2972%3A3%3C1076%3AEOMOTE%3E2.0.CO%3B2-O

Effects of Soil Moisture on Shrub Seedling Survival in Semi-Arid Grassland
Graham N. Harrington
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199106%2972%3A3%3C1138%3AEOSMOS%3E2.0.CO%3B2-X

Vegetation Changes on a Southern Arizona Grassland Range
R. R. Humphrey; L. A. Mehrhoff
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28195810%2939%3A4%3C720%3AVCOASA%3E2.0.CO%3B2-R

Livestock Grazing-Fire Regime Interactions within Montane Forests of Zion National Park, Utah
Michael H. Madany; Niel E. West
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28198308%2964%3A4%3C661%3ALGRIWM%3E2.0.CO%3B2-5

Herb Cover Effects on Tree Seedling Patterns in a Mature Hemlock-Hardwood Forest
Douglas A. Maguire; Richard T. T. Forman
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28198312%2964%3A6%3C1367%3AHCEOTS%3E2.0.CO%3B2-A
Can We Extrapolate the California Model of Grassland-Shrubland Ecotone?
Enrique Martinez; Eduardo Fuentes
Stable URL:
http://links.jstor.org/sici?sici=1051-0761%28199308%293%3A3%3C417%3ACWETCM%3E2.0.CO%3B2-W

Effects of Herbivory and Herb Interference on Oak Establishment in a Semi-Arid Temperate Savanna
Guy R. McPherson
Stable URL:
http://links.jstor.org/sici?sici=1100-9233%28199309%294%3A5%3C687%3AEHSAHI%3E2.0.CO%3B2-W

Effects of Cattle Grazing and Juniperus pinchotii Canopy Cover on Herb Cover and Production in Western Texas
Guy R. McPherson; Henry A. Wright
Stable URL:
http://links.jstor.org/sici?sici=0003-0031%28199001%29123%3A1%3C144%3AEHSGAI%3E2.0.CO%3B2-0

Comparative Drought Physiology and Biogeography of Quercus gambelii and Quercus turbinella
Ronald P. Neilson; L. H. Wullstein
Stable URL:
http://links.jstor.org/sici?sici=0003-0031%28198510%29114%3A2%3C259%3ADPABO%3E2.0.CO%3B2-C

T. G. O'Connor
Stable URL:
http://links.jstor.org/sici?sici=0021-8901%281993%2930%3A1%3C119%3ATJORAG%3E2.0.CO%3B2-8
Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis
H. Wayne Polley; Hyrum B. Johnson; Herman S. Mayeux
Stable URL: http://links.jstor.org/sici?cici=0012-9658%28199406%2975%3A4%3C976%3AICCR%3E2.0.CO%3B2-J

Early 19th-Century Fire Decline Following Sheep Pasturing in a Navajo Ponderosa Pine Forest
Mellissa Savage; Thomas W. Swetnam
Stable URL: http://links.jstor.org/sici?cici=0012-9658%28199012%2971%3A6%3C2374%3AEA1FDF%3E2.0.CO%3B2-N

Biological Feedbacks in Global Desertification
William H. Schlesinger; James F. Reynolds; Gary L. Cunningham; Laura F. Huenneke; Wesley M. Jarrell; Ross A. Virginia; Walter G. Whitford
Stable URL: http://links.jstor.org/sici?cici=0036-8075%2819900302%293%3A3%3C1043%3A3ABFID%3E2.0.CO%3B2-N

Sap Pressure in Vascular Plants
P. F. Scholander; H. T. Hammel; Edda D. Bradstreet; E. A. Hemmingsen
Stable URL: http://links.jstor.org/sici?cici=0036-8075%2819650416%293%3A339%3A3668%3C3%3ASPIVP%3E2.0.CO%3B2-Z

Relationship Between Grass Density and Brush Seedling Survival
A. M. Schultz; J. L. Launchbaugh; H. H. Biswell
Stable URL: http://links.jstor.org/sici?cici=0012-9658%28195504%293%3A2%3C226%3ARBGDAB%3E2.0.CO%3B2-D

Long-Term Vegetation Change at a Fully Protected Sonoran Desert Site
Raymond M. Turner
Stable URL: http://links.jstor.org/sici?cici=0012-9658%28199004%2971%3A2%3C464%3ALVCAAF%3E2.0.CO%3B2-Q
Influence of Plant Density on the Growth of Prosopis glandulosa var. glandulosa and Buchloe dactyloides
O. W. Van Auken; J. K. Bush
Stable URL: http://links.jstor.org/sici?sici=0040-9618%28198710%2F12%29114%3A4%3C393%3AIOPDOT%3E2.0.CO%3B2-I

Competition between Schizachyrium scoparium and Prosopis glandulosa
O. W. van Auken; J. K. Bush
Stable URL: http://links.jstor.org/sici?sici=0002-9122%28198806%2975%3A6%3C782%3ACBSSAP%3E2.0.CO%3B2-9

Prosopis Glandulosa Growth: Influence of Nutrients and Simulated Grazing of Bouteloua Curtipendula
O. W. Van Auken; J. K. Bush
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28198904%2970%3A2%3C512%3APGGION%3E2.0.CO%3B2-T

Growth of Prosopis Glandulosa in in Response to Changes in Aboveground and Belowground Interference
O. W. Van Auken; J. K. Bush
Stable URL: http://links.jstor.org/sici?sici=0012-9658%28199706%2978%3A4%3C1222%3AGOPGII%3E2.0.CO%3B2-W

Continuous and Episodic Components of Demographic Change in Arid Zone Shrubs: Models of Two Eremophila Species from Western Australia Compared with Published Data on Other Species
I. W. Watson; M. Westoby; A. McR. Holm
Stable URL: http://links.jstor.org/sici?sici=0022-0477%28199712%2985%3A6%3C833%3ACACEDOD%3E2.0.CO%3B2-A
Small-Mammal Regulation of Vegetation Structure in a Temperate Savanna
Jake F. Weltzin; Steve Archer; Rod K. Heitschmidt
Stable URL:
http://links.jstor.org/sici?sici=0012-9658%28199704%2978%3A3%3C751%3ASROVSI%3E2.0.CO%3B2-E

A Simulation Model for Shrub Ecosystem in the Semiarid Karoo, South Africa
Thorsten Wiegand; Suzanne J. Milton; Christian Wissel
Stable URL:
http://links.jstor.org/sici?sici=0012-9658%28199510%2976%3A7%3C2205%3AASEMSE%3E2.0.CO%3B2-%23