Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion

USDA DSONR(S

Mike Duniway Jeff Herrick Ken Spaeth Nichole Barger Justin Van Zee Jayne Belnap

Why soil aggregate stability?

- Soil surface characteristics control capture and retention of water and nutrients
- Soil aggregate stability is related to soil erodibility & infiltration capacity, both of which are:
 - <u>highly variable</u> in space and time
 - difficult to measure

"... soil aggregate stability ... has been demonstrated to have a strong relationship with interrill erosion" (Blackburn & Pierson, 1994)

Soil stability kit

(1) Collect 6-8 mm-diameter
 sample from surface and 20 25mm depth (1 sample/sieve).

Herrick et. al 2001. Catena 44: 27-35.

(2) Immerse in dI water.

(3) Record slaking in 1st 5 min.

(4) Wet sieve 5x.

(5) Rate sample on a scale from 1 to 6.

Soil stability kit: interpretation

Soil erosion: high values indicate lower erodibility

Water infiltration: high values may be associated with higher infiltration rates.

Stability class	Criteria for assignment to stability class (for Standard Characterization) ^a
1	50 % of structural integrity lost within 5 seconds of insertion in water.
2	50 % of structural integrity lost 5 - 30 seconds.
3	50 % of structural integrity lost 30 - 300 seconds after insertion OR <10% of soil remains on sieve after 5 dipping cycles.
4	10 - 25% of soil remains after 5 dipping cycles.
5	25 - 75% of soil remains after 5 dipping cycles.
6	75 - 100% of soil remains after 5 dipping cycles.

Mineralogy

Regional climate

Regional climate

NRCS NRI Data from 2003-06

Mean Annual Precipitation (mm)

SOM (stable fraction, turnover time >15 yrs)

Dynamic factors that affect aggregate stability

- Auto correlated with many other plot attributes at larger scales
- Falsely conclude not important for predicting site hydrology and erosion characteristics

 Disturbance & Patchiness

- Protected vs.
 Unprotected
 - Protected not important for raindrop impact
 - Protected often not important for overland flow
- Site average not always reflective of importance

• Non-linear response

- Ideal for heterogeneous systems?
- Incorporate spatial distribution of:
 - Soil stability measures
 - Vegetation measures
 - Other soil & site properties
- With:
 - Multiscale runoff and erosion measures

How do we look at in context of hydrology and erosion? • And......incorporate field data in spatially explicit analysis

Questions?

