Long-Term Trends in Ecological Systems: A Basis for Understanding Responses to Global Change
Contents

Contributors ...VIII
Technical Consultants ..X

Introduction to Cross-Site Comparisons and History and Organization of the EcoTrends Project

Chapter 1: Long-Term Trends in Ecological Systems: An Introduction to Cross-Site Comparisons and Relevance to Global Change Studies ...1
Chapter 2: History and Organization of the EcoTrends Project ..21

Cross-Site Comparisons of Ecological Responses to Global Change Drivers

Chapter 3: Cross-Site Comparisons of Ecological Responses to Climate and Climate-Related Drivers ...28
Chapter 4: Cross-Site Comparisons of State-Change Dynamics ...36
Chapter 5: Patterns of Net Primary Production Across Sites ...42
Chapter 6: Cross-Site Comparisons of Precipitation and Surface Water Chemistry46
Chapter 7: Cross-Site Comparisons of Ecological Responses to Long-Term Nitrogen Fertilization51
Chapter 8: Long-Term Trends in Human Population Growth and Economy Across Sites54
Chapter 9: Disturbance Regimes and Ecological Responses Across Sites58
Chapter 10: Cross-Site Studies “By Design”: Experiments and Observations That Provide New Insights ..72

Long-Term Trends in Global Change Drivers and Responses at Site and Continental Scales

Chapter 11: Long-Term Trends in Climate and Climate-Related Drivers ...81
Chapter 12: Long-Term Trends in Precipitation and Surface Water Chemistry115
Chapter 13: Long-Term Trends in Human Demography and Economy Across Sites162
Chapter 14: Long-Term Trends in Production, Abundance, and Richness of Plants and Animals191
Chapter 15: Management and Policy Implications of Cross- and Within-Site Long-Term Studies206
Chapter 16: Recommendations for Data Accessibility ..206
Chapter 17: Long-Term Research Across Sites, Ecosystems, and Disciplines: Synthesis and Research Needs ..226

Appendices

Appendix 1: Site Descriptions ...234
Appendix 2: Average (Standard Error) Maximum, Mean, and Minimum Air Temperature and Annual Precipitation at Each Site ..312
Appendix 3: Average (Standard Error) Ice Duration, Sea Level, Streamflow, Water Clarity, and Water Temperature for Sites With Data .. 314

Appendix 4: Regression Coefficients and R² Values for Nine Climatic Variables for Which Linear Regression Against Time Is Significant (p < 0.05) .. 316

Appendix 5: Annual Average (Standard Error) Nitrogen (as Nitrate) From Various Sources at Sites With Data .. 319

Appendix 6: Regression Coefficients and R² Values for Nitrogen (as Nitrate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05) 321

Appendix 7: Annual Average (Standard Error) Nitrogen (as Ammonium) From Various Sources at Sites With Data ... 324

Appendix 8: Regression Coefficients and R² Values for Nitrogen (as Ammonium) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05) 325

Appendix 9: Annual Average (Standard Error) Sulfur (as Sulfate) From Various Sources at Sites With Data ... 327

Appendix 10: Regression Coefficients and R² Values for Sulfur (Sulfate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05) 328

Appendix 11: Annual Average (Standard Error) Chloride From Various Sources at Sites With Data 330

Appendix 12: Regression Coefficients and R² Values for Chloride From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05) 332

Appendix 13: Annual Average (Standard Error) Calcium From Various Sources at Sites With Data 333

Appendix 14: Regression Coefficients and R² Values for Calcium From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05) 336

Appendix 15: Human Population and Economy Variables in 2000 for the Focal County of Each Site, as Grouped by Ecosystem Type .. 338

Appendix 16: Annual Average (Standard Error) Aboveground Net Primary Production (ANPP) at Sites With Data ... 341

Appendix 17: Other Measures of Average (Standard Error) Terrestrial Production at Sites With Data... 343

Appendix 18: Average (Standard Error) Aquatic Production at Sites With Data ... 344

Appendix 19: Average (Standard Error) Biomass of Primary Producers (Plants, Algae) for Sites With Data .. 345

Appendix 20: Average (Standard Error) Plant Species Richness for Sites With Data ... 347

Appendix 21: Average (Standard Error) Animal Abundance for Sites With Data .. 349

Appendix 22: Average (Standard Error) Animal Species Richness for Sites With Data 352

Appendix 23: Regression Coefficients and R² Values for Plant and Animal Variables for Which Linear Regression of Each Variable Against Time Is Significant (p < 0.05) and the Trend Appears Linear ... 353

Appendix 24: Lead Principal Investigator(s) (PI), Information Managers (IM), and Administrative Program of the LTER Programs .. 355

Appendix 25: Researchers Involved in the EcoTrends Project at Non-LTER Sites .. 359
Appendix 26: List of Stations and Length of Record for Each Climate Variable by Site 362
Appendix 27: List of Stations and Length of Record for Each Precipitation or Surface Water Chemistry Variable by Site .. 367
Appendix 28: List of Stations and Length of Record for Each Plant and Animal Variable by Site, as Grouped by Ecosystem Type ... 371
Index .. i
Appendix 19. Average (standard error) biomass of primary producers (plants, algae) for sites with data

(Multiple stations are given if possible. Sites are grouped by ecosystem type. See Appendix 28 for length of record for each station.)

<table>
<thead>
<tr>
<th>Site code</th>
<th>Taxon</th>
<th>Station</th>
<th>Biomass 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tussock Tundra 1981 Plots,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>Betula nana (Dwarf birch)</td>
<td>control</td>
<td>81 (18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fertilized</td>
<td>410 (146)</td>
</tr>
<tr>
<td></td>
<td>Eriophorum vaginatum (Tussock cottongrass)</td>
<td>control</td>
<td>56 (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fertilized</td>
<td>55 (27)</td>
</tr>
<tr>
<td></td>
<td>Ledum palustre (Marsh labrador tea)</td>
<td>control</td>
<td>79 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fertilized</td>
<td>48 (13)</td>
</tr>
<tr>
<td></td>
<td>Vaccinium vitis-idaea (Lingonberry)</td>
<td>control</td>
<td>72 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fertilized</td>
<td>23 (12)</td>
</tr>
<tr>
<td>Coastal</td>
<td>Periphyton (algae)</td>
<td>Shark River Slough sites 1, 2, and 3,</td>
<td></td>
</tr>
<tr>
<td>FCE</td>
<td></td>
<td>Epiphyton substrate</td>
<td>9 (3)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mat substrate</td>
<td>18 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Periphyton substrate</td>
<td>8 (2)</td>
</tr>
<tr>
<td>GCE</td>
<td>Plants</td>
<td>High Marsh site</td>
<td>4245 (238)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zone 1, Creek Bank</td>
<td>5984 (972)</td>
</tr>
<tr>
<td>PIE</td>
<td>Spartina spp. (Cordgrass)</td>
<td>Spartina alterniflora-dominated salt marsh at Goat Island, North Inlet, Georgetown, SC</td>
<td>547 (46)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spartina alterniflora-dominated salt marsh at Law’s Point, Rowley River, PIE, MA</td>
<td>560 (69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spartina patens-dominated salt marsh at Law’s Point, Rowley River, PIE, MA</td>
<td>1023 (87)</td>
</tr>
<tr>
<td>SBC</td>
<td>Macrocystis pyrifera (Kelp)</td>
<td>Arroyo Burro Reef, Santa Barbara Channel</td>
<td>185 (123)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arroyo Quemado Reef, Santa Barbara Channel</td>
<td>508 (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohawk Reef, Santa Barbara Channel</td>
<td>530 (134)</td>
</tr>
<tr>
<td>VCR</td>
<td>Plants</td>
<td>Randomly selected, destructively sampled, non-treated plots at Frank Day Well Location R2, Hog Island</td>
<td>112 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frank Day Well Location R3, Hog Island</td>
<td>141 (27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frank Day Well Location R4, Hog Island</td>
<td>139 (16)</td>
</tr>
<tr>
<td>Eastern forests</td>
<td>Plants (kg/625 m²)</td>
<td>Vegetation zone 1 at watershed 6</td>
<td>110 (15)</td>
</tr>
<tr>
<td>HBR</td>
<td></td>
<td>Vegetation zone 4 at watershed 6</td>
<td>258 (29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation zone 5 at watershed 6</td>
<td>338 (37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation zones 2 and 3 at watershed 6</td>
<td>172 (20)</td>
</tr>
<tr>
<td>NTL</td>
<td>Aquatic plants</td>
<td>Trout Lake</td>
<td>39 (5)</td>
</tr>
</tbody>
</table>
Appendix 19. Average (standard error) biomass of primary producers (plants, algae) for sites with data—Continued

<table>
<thead>
<tr>
<th>Site code</th>
<th>Taxon</th>
<th>Station</th>
<th>Biomass¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperate grasslands and savannas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td>Plants</td>
<td>Old Fields 24, 4, 41, 28</td>
<td>118 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Old Fields 72, 35, 45, 5</td>
<td>130 (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Old Fields 77, 70, 26, 53</td>
<td>134 (9)</td>
</tr>
<tr>
<td>SPR</td>
<td>Forbs</td>
<td>Watershed 1</td>
<td>76 (7)</td>
</tr>
<tr>
<td></td>
<td>Grass</td>
<td>Watershed 1</td>
<td>172 (17)</td>
</tr>
<tr>
<td></td>
<td>Western forests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>Tree boles (kg/m²)</td>
<td>Reference Stand 2</td>
<td>62 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Stand 29</td>
<td>106 (3)</td>
</tr>
</tbody>
</table>

¹ The unit is g/m² if not specified.
* Linear regression of the variable against time is significant (p < 0.05) and the trend appears linear.